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Abstract

Recently, min-max saddle-point problems have garnered increasing attention due to
their applications in machine learning (e.g., GAN, distributionally robust optimiza-
tion, AUC maximinzation). However, the research of min-max optimization is still
far behind that of the minimization problems. It is still unclear (i) how to achieve a
fast rate ofO(1/T ) for the duality gap of strongly-convex strongly-concave (SCSC)
min-max problems given that the fast rate for strongly convex minimization is
well studied; (ii) how to design a practical algorithm that can achieve the same
complexity of O(1/ε4) for finding an ε-stationary solution to a weakly-convex
strongly-concave (WCSC) min-max problem similar to that for weakly-convex
minimization problem. In this paper, we aim to fill these gaps by providing sharp
analysis of simple restarted stochastic gradient methods. For SCSC problems, to
the best of our knowledge, we are the first time to establish an iteration complexity
of O(1/ε) for reaching ε-duality gap, instead of primal gap in existing studies.
For WCSC problems, we prove that the proposed algorithm achieves an iteration
complexity of O(1/ε4) for finding an ε-nearly stationary point unlike existing
studies that require special structure of the objective function and large mini-batch
size.

1 Introduction

In this paper, we consider stochastic algorithms for solving the following min-max saddle-point
problem with a general objective function f without smoothness:

min
x∈X

max
y∈Y

f(x, y), (1)

where X and Y are closed convex sets and f : X × Y → R is continuous.

Problem (1) covers a number of applications in machine learning, including distributionally robust
optimization (DRO), learning with non-decomposable loss functions, etc. For example, in [11, 10, 18],
variance regularized problems are formulated as DRO by setting f(x, y) =

∑n
i=1 yi`i(x) and Y =

{y ∈ Rn|Dφ(y, 1n ) ≤ ρ
n ,
∑n
i=1 yi = 1, yi > 0} where Dφ(p‖q) =

∫
φ(dpdq )dq and φ : R+ → R is

convex with φ(1) = 0. Another example is AUC maximization, which is a typical non-decomposable
loss. It is shown that AUC maximization with a square loss is equivalent to a min-max problem
minx,a,b maxα

1
n

∑n
i=1 F (x, a, b, α; (ci, di)) with the objective function F (x, a, b, α; (c, d)) = (1−

p)(x>c−a)2I[d=1]+p(x
>c−d)2I[d=−1]−p(1−p)α2+2(1+α)(px>cI[d=−1]−(1−p)x>cI[d=1])

where (ci, di) denotes a feature-label pair, p is the percentage of positive example and I[·] is the
indicator function [18, 9, 4, 19].
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Table 1: Summary of complexity results of our algorithms and existing algorithms for finding an
ε-optimal solution for SCSC or an ε-stationary solution for WCSC min-max problems.

Setting Works Restrictions Complexity

[18] Special Structure, Primal Gap O (1/ε+ Compl(A) log(1/ε))
SCSC This paper No O (1/ε) (Duality gap)

[14] Special Structure Õ
(
1/ε+ n/ε2

)
WCSC [8] Large mini-batch & Smoothness O

(
1/ε4

)
This paper No Õ

(
1/ε4

)
Although stochastic algorithms for min-max problems have been studied extensively in the literature,
their research is still far behind that for stochastic minimization problems. Below, we highlight some
of these gaps to motivate the present work. When f is convex in terms of x and concave in terms of y,
many studies have designed and analyzed stochastic primal-dual algorithms for solving the min-max
problems [12, 21, 15, 5, 7, 16, 20, 13, 18]. The standard stochastic primal-dual gradient method
suffers from a convergence rate of O(1/

√
T ) for convex-concave min-max problems [12], which is

similar to that for stochastic convex minimization. However, a fast rate of O(1/T ) for the duality gap
of a stochastic algorithm is still unknown even for a strongly-convex and strongly-concave problem
without imposing special structure and smoothness for the objective function. In contrast, the fast rate
of O(1/T ) has been established for stochastic strongly convex minimization problems [6]. Recently,
Yan et al. [18] has considered stochastic algorithms for SCSC min-max problems. They considered a
special family of problems where f(x, y) = y>`(x)− φ∗(y) + g(x) is strongly convex and strongly
concave, and proposed a restarted algorithm that runs standard stochastic gradient updates for each
stage and computes a restarted dual solution by A(x̄) = ∇φ(`(x̄)) where x̄ is the averaged solution
for restarting the primal update. They established an complexity of O(1/ε + Compl(A) log(1/ε))
for finding a solution with ε-primal objective gap, where Compl(A) denotes the complexity for
computing A(x̄). In this paper, we advance the research for solving SCSC min-max problems
significantly. We do not impose any special structure except for strong-convexity and strong concavity,
analyze a simple restarted stochastic gradient method that restarts the primal and dual updates with
averaged solution from the previous stage, and establish O(1/ε) iteration complexity for finding a
solution with ε-duality gap in high probability. In a word, our algorithm is simpler, our assumption
is weaker, and our theoretical result is stronger. The key to achieving this stronger result lies at the
sharp analysis of the simple restarted stochastic gradient method. To the best of our knowledge, this
is the first work that establishes O(1/T ) convergence rate of a stochastic algorithm for solving SCSC
problems without imposing special structure and smoothness condition of the objective function.

When f is non-convex in terms of x, there are some recent studies trying to find first-order stationary
point [14, 8]. Rafique et al. [14] is the first work that considers weakly-convex concave min-max
problems and proposed stochastic primal-dual algorithms with theoretical guarantee. Without strong
concavity, their algorithm enjoys an iteration complexity of O(1/ε6). When the objective function is
strongly concave in terms of y and has a special structure as f(x, y) = 1

n

∑
i y
>ci(x)− r(y) + g(x),

their algorithm suffers from a complexity of O(1/ε4 + n/ε2) for reaching a stationary point. Lin et
al. [8] analyzed stochastic gradient ascent algorithm for smooth non-convex and concave problems.
Their complexity is O(1/ε4) when the dual part becomes strongly concave. However, their algorithm
requires a large number of mini-batch size in the order of O(1/ε2), which is not practical. In
contrast, stochastic algorithms for weakly convex minimization problems do not require any special
structure of the problem and do not necessarily require a large mini-batch size [2, 1, 3]. To fill
this gap, we present a simple restarted gradient method and provide a sharp analysis for finding a
nearly ε-stationary solution. Our algorithm does not require a large mini-batch size and achieve the
same iteration complexity of O(1/ε4) for weakly-convex and strongly-concave problems without
smoothness assumption. Finally, we summarize our results and the comparison with existing results
in Table 1.

2 Preliminaries
This section gives notations and assumptions used in the paper. We let ‖ ·‖ denote the Euclidean norm
of a vector. Given a function f : Rd → R, we denote the Fréchet subgradients and limiting Fréchet
gradients by ∂̂f and ∂f respectively, i.e., at x, ∂̂f(x) = {y ∈ Rd : limx→x′ inf f(x)−f(x′)−y>

‖x−x′‖ ≥
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Algorithm 1 Restarted Stochastic Gradient Method (RSG-MM-1) for SCSC
1: Init.: x1

0 = x0 ∈ X , y1
0 = y0 ∈ Y .

2: for s = 1, 2, ..., S do
3: for t = 0, 1, 2, ..., Ts − 1 do
4: Compute stochastic gradients Gsx,t = ∂xf(xst , y

s
t ; ξ

s
t ) and Gsy,t = ∂yf(xst , y

s
t ; ξ

s
t ).

5: xst+1 = ΠX∩B(xs0,Rs)
(xst − ηx,sGsx,t)

6: yst+1 = ΠY ∩B(ys0,Rs)
(yst + ηy,sGsy,t)

7: end for
8: xs+1

0 = x̄s = 1
T

∑T−1
t=0 xst , ys+1

0 = ȳs = 1
T

∑T−1
t=0 yst

9: ηx,s+1 =
ηx,s

2 , ηy,s+1 =
ηy,s

2 , Rs+1 = Rs/
√

2, Ts+1 = 2Ts.
10: end for
11: Return x̄S .

0}, and ∂f(x) = {y ∈ Rd : ∃xk
f→ x, vk ∈ ∂̂f(xk), vk → v}. Here xk

f→ x represents
xk → x and g(xk) → g(x). A function f(x) is µ-strongly convex on X if for any x, x′ ∈ X ,
∂f(x′)>(x − x′) + µ

2 ‖x − x
′‖2 ≤ f(x) − f(x′). A function f(x) is ρ-weakly convex on X for

any x, x′ ∈ X ∂f(x′)>(x − x′) − µ
2 ‖x − x

′‖2 ≤ f(x) − f(x′). Let Gx = ∂xf(x, y; ξ) denote a
stochastic subgradient of f at x given y, where ξ is used to denote the random variable. Similarly, let
Gy = ∂yf(x, y; ξ) denote a stochastic sugradient of f at y given x. Let ΠΩ[·] denote the projection
onto the set Ω, and let B(x,R) denotes an Euclidean ball centered at x with a radius R.

For saddle-point problems with SCSC functions, we use duality gap to measure the convergence. Let
us define Gap(x, y) = maxy′∈Y f(x, y′)−minx′∈X f(x′, y), which is the duality gap at (x, y). For
WCSC functions, we use nearly ε-stationarity as the measure of convergence, which is defined as
follows.

Definition 1. A solution x is a nearly ε-stationary point of minx ψ(x) if there exists z and a constant
c > 0 such that ‖z − x‖ ≤ cε and dist(0, ∂ψ(z)) ≤ ε.

The following assumptions will be imposed in our analysis and we suppose that Assumption 1 holds
throughout the paper.

Assumption 1. X and Y are closed convex sets. There exists initial solution x0 ∈ X, y0 ∈ Y and
ε0 > 0 such that Gap(x0, y0) ≤ ε0.

Assumption 2. (1) f(x, y) is µ-strongly convex in x for any y ∈ Y and λ-strongly concave in y for
any x ∈ X . (2) ‖Gx‖ ≤ B1 and ‖Gy‖ ≤ B2.

Assumption 3. (1) f(x, y) is ρ-weakly convex in x for any y ∈ Y and is λ-strongly concave in y for
any x ∈ X . (2) E[‖Gx‖2] ≤M1 and E[‖Gy‖2] ≤M2.

3 Restarted Stochastic Gradient Methods for Min-Max Problems
SCSC Problems. The proposed algorithm for SCSC min-max problems is shown in Algorithm 1,
which is simply a restarted version of stochastic primal-dual gradient method. It is worth mentioning
that this algorithm can be considered as a primal-dual variant of the stochastic algorithm proposed
in [17]. We first give convergence analysis of the inner loop (Line 4 to 6) in Lemma 1 and Lemma 2
(we omit the s index of outer loop for simplicity). Then we analyze the convergence of the outer loop
in Corollary 1 and Corollary 1.

Lemma 1. Let Line 4 to 6 of Algorithm 1 run for T iterations by fixed step size ηx and ηy . Then with
the probability at least 1− δ̃, for any x ∈ X ∩ B(x0, R) and y ∈ Y ∩ B(y0, R), we have

f(x̄, y)− f(x, ȳ) ≤ ||x− x0||2

ηxT
+
||y − y0||2

ηyT
+

5ηxB
2
1

2
+

5ηyB
2
2

2
+

8(B1 +B2)R
√

2 log 1
δ̃√

T
,

(2)

where x̄ =
∑T−1
t=0 xt/T , ȳ =

∑T−1
t=0 yt/T .

Lemma 2. Suppose Assumption 2 holds. Denote (x∗, y∗) the unique optimal solution of
f(x, y), x̂R(y) = arg minx∈X∩B(x0,R) f(x, y) and ŷR(x) = arg maxy∈Y ∩B(y0,R) f(x, y). As-
sume the initial duality gap Gap(x0, y0) ≤ ε0. Let Line 4 to 6 of Algorithm 1 run
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Algorithm 2 Restarted Stochastic Gradient Method (RSG-MM-2) for WCSC
1: Init.: x1

0 = x0 ∈ X , y1
0 = y0 ∈ Y , γ = 2ρ.

2: for k = 1, 2, ...,K do
3: Set Tk = 106(k+1)

3 , ηkx = 2
ρk , ηky = 2

λk , Gkx,t = ∂xf(xkt , y
k
t ; ξkt ), Gky,t = ∂yf(xkt , y

k
t ; ξkt ).

4: for t = 1, 2, ..., Tk do
5: xkt+1 = arg minx∈X x

>Gkx,t + 1
2ηkx
‖x− xkt ‖2 + γ

2 ‖x− x
k
0‖2

6: ykt+1 = arg miny∈Y −y>Gky,t + 1
2ηky
‖y − ykt ‖2

7: end for
8: xk+1

0 = x̄k = 1
T

∑T−1
t=0 xkt , yk+1

0 = ȳk = 1
T

∑T−1
n=0 y

k
t

9: end for
10: Return xτ0 by τ randomly sampled from {1, ...,K}.

T iterations with ηx = min{µ,λ}R2

200B2
1

, ηy = min{µ,λ}R2

200B2
2

, R ≥ 2
√

2ε0
min{µ,λ} and T ≥

max

{
6402(B1+B2)22 log( 1

δ̃
),16000 max{B2

1 ,B
2
2}
}

µ2R2 . We have the following results: (i)‖x0 − x∗‖ ≤ R
2 ,

(ii)‖y0 − y∗‖ ≤ R
2 , (iii)‖x̂R(ȳ)− x∗‖ ≤ R

2
√

2
and ‖ŷR(x̄)− y∗‖ ≤ R

2
√

2
with probability 1− δ̃.

Remark. Lemma 2 shows that with probability 1 − δ̃, we have ‖x0 − x̂R(ȳ)‖ ≤ R
2 + R

2
√

2
< R

and ‖y0 − ŷR(x̄)‖ ≤ R
2 + R

2
√

2
< R. Therefore, supposing x̂(ȳ) = arg minx∈X f(x, ȳ) and

ŷ(x̄) = arg maxy∈Y f(x̄, y), we have x̂(ȳ) = x̂R(ȳ) and ŷ(x̄) = ŷR(x̄). Then it holds that
x̂(ȳ) ∈ B(x0, R) and ŷ(x̄) ∈ B(y0, R). That is, (2) holds for x = x̂(ȳ) and y = ŷ(x̄).

Lemma 2 is the key to our analysis. At the s-th outer loop, to derive Gap(x̄s, ȳs) by (2), we have
to plug in x = x̂(ȳs) and y = ŷ(x̄s). However, it is not necessary that x̂(ȳs) ∈ B(xs0, Rs) and
ŷ(x̄s) ∈ B(ys0, Rs). Lemma 2 critically uses x∗ and y∗ as the connected points and shows the above
two conditions are satisfied when properly setting ηx,s, ηy,s, Ts and Rs. Then the following Theorem
gives the relation between duality gaps of two consecutive outer loops by using the proved conditions.
This approach is also employed when analyzing our algorithm for WCSC problems in Theorem 2.

Theorem 1. Consider the s-th outer loop of Algorithm 1 with an initial solution (xs0, y
s
0) and the

ending averaged solution (x̄s, ȳs). Suppose Assumption 2 and parameters setting in Lemma 2 hold
and in particular Gap(xs0, y

s
0) ≤ ε0 ≤ min{µ,λ}R2

8 . We have with probability 1− δ̃, Gap(x̄s, ȳs) ≤
min{µ,λ}R2

16 .

Corollary 1. Suppose Assumption 2 and parameter setting in Lemma 2 hold and R1 ≥ 2
√

2ε0
min{µ,λ} .

The total number of iterations of Algorithm 1 to achieve ε-duality gap with probability 1− δ is

Ttot =
max

{
6402(B1 +B2)22 log(1

δ̃
), 16000 max{B2

1 , B
2
2}
}

8 min{µ, λ}ε
,

where S = dlog( ε0ε )e and δ = Sδ̃.

WCSC Problems. The restarted stochastic gradient method for solving WCSC problems is summa-
rized in Algorithm 2. It is similar to the stochastic algorithm PG-SMD proposed in [14] that consists
of solving a sequence of proximally guided SCSC problems but with several differences: (i) the step
size is different from PG-SMD for weakly convex and concave problems; (ii) the restarted solution
for the dual variable is simple average that is different from that in PG-SMD, which requires solving
a maximization problems with high time complexity. We first present the convergence result for each
stage regarding the duality gap for the regularized function f̂x0

(x, y) = f(x, y) + γ
2 ‖x− x0‖2, and

then use it to prove the convergence of the proposed algorithm for finding a nearly stationary solution.
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Lemma 3. Suppose Assumption 3 holds. Let x̂xk0 (ȳk) = arg minx∈X f̂xk0 (x, ȳk) and y∗(x̄k) =

arg maxy∈Y f(x̄k, y). For k ≥ 1, Line 3 to 8 of Algorithm 2 guarantee

E[max
y∈Y

f̂xk0 (x̄k, y)−min
x∈X

f̂xk0 (x, ȳk)]

≤ 5ηkxM
2
1

2
+

5ηkyM
2
2

2
+

1

T

{
(

1

ηx
+
ρ

2
)E[‖x̂xk0 (ȳk)− xk0‖2] +

1

ηy
E[‖y∗(x̄k)− yk0‖2]

}
. (3)

Theorem 2. Define x̂∗x0
= arg minx∈X [ψ(x) := maxy∈Y f̂x0

(x, y)]. Algorithm 2 guarantees

E[Dist(0, ∂ψ(x̂∗xτ0 ))] ≤ γ2E[‖x̂∗xτ0 − x
τ
0‖2] ≤ ε

after K = max{ 1696γ(
M2

1
ρ +

M2
2
λ )

ε2 ln(
1696γ(

M2
1
ρ +

M2
2
λ )

ε2 ), 1376γε0
5ε2 }. The total number of iteration is∑K

k=1 Tk = Õ( 1
ε4 ).
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