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Abstract

Generative adversarial networks (GANs) are state of the art generative models
for images and other domains. Training GANs is difficult, although not nearly as
difficult as expected given theoretical results on finding a Nash (PPAD complete)
and our understanding of dynamical systems. Several new algorithms and tech-
niques have been proposed to stabilize GAN training, but nearly all employ Adam
or RMSProp. In fact, training a GAN with SGD instead of Adam often fails. Here,
we aim to understand how Adam circumvents some of the difficulties associated
with GAN training. To this end, we study Adam in the context of a cycle problem.
The cycle problem is a canonical equilibrium problem for which naive optimization
approaches, e.g., simultaneous SGD, fail. Understanding how Adam works in this
context helps reveal reasons for its unexpected success.

1 Introduction

In their seminal work on generative adversarial networks (GANs), Goodfellow et al. [8] proposed a
modified minimax objective which was optimized using SGD with momentum. Since this original
work, GANs have achieved state of the art performance on a variety of generative modeling tasks,
most notably in high-resolution image generation [5, 10]. Notably, nearly every major new GAN
model and training algorithm has employed either Adam [12] or RMSProp [20] (see Table 1). For
reference, the TensorFlow [1] implementation of Adam proceeds (coordinate-wise) as follows:

mt ← β1mt−1 + (1− β1)gt (1)

vt ← β2vt−1 + (1− β2)g2t (2)

wt ← wt − α
mt√
vt + ε

. (3)

At iteration t, gt is the (stochastic) gradient, mt is the exponentially averaged gradient, vt is the
exponentially averaged squared gradient, wt are the model parameters and ε is a small constant (e.g.,
10−8). β1 and β2 are hyper-parameters which control the rate of forgetting in the exponentially
weighted averages. The ubiquitous default hyper-parameter choices of β1 = 0.9 and β2 = 0.999
have proven themselves empirically on a wide range of supervised learning problems. One possible
explanation of the success of Adam in this setting is its tendency to better explore non-smooth
optimization landscapes [3].

However, of the GAN works that employ Adam, most choose β1 ∈ {0, 0.5}. No rationale is
given for the choice of these values besides the fact that they provided the best performance over a
hyperparameter sweep. This is surprising given the suggested default value works so well for deep
learning in classification and regression settings. In fact, β1 = 0 represents zero gradient averaging,
an extreme that one would expect would negatively impact minibatch training.
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Adam (β1=0.0) Progressive Growing [10], BigGAN [5], StyleGAN [11], Wasserstein GAN [2]1

Adam (β1=0.5) DCGAN [18], Improved Techniques [19], Conditional GAN [16], ExtraAdam [7],
CycleGAN[22], Pix2Pix [9], StackGAN [21], UnrolledGAN [15]

RMSProp Numerics of GANs [14], SGA [4], Crossing-the-Curl [6]

Table 1: Adam (β1=0.0 or 0.5) and RMSProp are the algorithms of choice for training GANs. Why?

Why then do such low β1 values work well for training GANs even though these values are rarely
shown to be performant on supervised deep learning problems? One major difference is that a GAN
is a two player (minimax) game while classification and regression represent one player games —the
learning dynamics of games present issues not dealt with in classical optimization settings.

The cycle problem, minxmaxy{V (x, y) = xy}, has been proposed as a canonical equilibrium
problem for gaining a better understanding of GANs [4, 6]. Cycles cannot appear in the continuous-
time gradient descent dynamics of deterministic (full batch training) optimization problems. However,
they can (and do [6]) appear in GANs. Our hypothesis is that Adam with low β1 is somehow better
poised to cope with the cycle problem and this leads to its better performance on GANs.

In the next section, we explore reasons for how Adam might reach the equilibrium of the cycle
problem where gradient descent always fails. We then perform experiments on the cycle problem to
tease out the relationships between β1, β2, batch size, convergence rate, and limit sets. Finally, we
show empirically that the relationships hold beyond the simple cycle problem setting and extend to
GANs trained on real data.

2 The Cycle Problem
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Figure 1: Behaviour of Adam when used to train two models whose learning trajectories trace a
cycle. The red arc denotes the approximate effective window over which Adam averages gradients
and squared-gradients. The red vector denotes the coupled gradient direction of both players ten
iterations prior: gt−10 = [∇xV |t−10,−∇yV |t−10]. The blue vector denotes the current coupled
gradient direction. The green arrow illustrates the effect of Adam run with β1 = 0 and a β2 value
that induces the effective window size matching the red arc. Overbars denote averages over the red
arc. The equilibrium is at the origin.

Adam’s effect on the cycle problem can be decomposed into three separate processes. First, a nonzero
value for β1 makes Adam average over historical gradients (producing the 1st moment vector, eq. 1).
In the cycle setting, historical gradients direct learning outside the cycle leading to divergence
(see gt−10 in Figure 1a), therefore, setting β1 = 0 in this setting is reasonable. Moreover, this
is supported by variational inequality theory in which the algorithm used for solving equilibrium
problems is extragradient [13]; extragradient performs updates using “future gradients”, gt+1, which
will take learning inside the cycle towards the equilibrium. In other words, historical gradients are in
direct opposition to theory in this setting.

Second, the cycle problem as presented, assumes deterministic updates. GANs are trained with
minibatches, and therefore, must cope with noise in the gradients. Furthermore, GAN dynamics are
not purely cyclical. Nonzero β1 values help to smooth out gradients and accelerate convergence.
So although β1 = 0 seems ideal for the cycle, there is a tradeoff that must be considered
depending on minibatch size.

1Authors mention Adam with β1 > 0 is unstable.
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Lastly, Adam averages over historical squared gradients as well (producing the 2nd moment vector,
eq. 2). As illustrated in Figure 1a, if β2 is chosen well, Adam averages squared-gradients over the
effective window highlighted by the red arc. The squared gradients over this arc are small in the
x-direction and large in the y-direction. Therefore, when Adam readjusts gradients by dividing by
the root of the squared gradient, ∇xV |t gets amplified and∇yV |t gets attenuated. The effect is the
original gradient gt in blue is transformed to the one in green, now pointing inside the cycle.

The effect of β2 is not consistent across all arcs of the cycle despite symmetry of the trajectory. In
Figure 1b, the historical gradients are an equal mix of small and large ∇x and ∇y. This results in a
2nd moment vector that is equal across dimensions, and so dividing by the 2nd moment does not
change the update direction. Therefore, Adam will appear to diverge at some points along the cycle
(similar to simultaneous gradient descent).

To summarize these points, an optimal β2 specifies a constant historical window in terms of angle, not
arc length for the cycle problem. Alternatively, as Adam approaches the equilibrium, the effective
historical window size over which the squared gradients are averaged must shrink to reflect
the shrinking radius of the cycle. Therefore, a smaller β2 may be ideal at the end of training.

These statements motivate the following GAN hypotheses tested empirically in the next section:

1. The existence of cycles suggests β1 less than the default 0.9 will help avoid divergence.
2. The existence of noise and non-cyclical dynamics suggests β1 > 0 to filter gradient noise.
3. The existence of cycles suggests β2 less than the default 0.999 may help lead iterates closer
to an equilibrium at the end of training.

3 Cycle Experiments

We first study the effect of β1 on convergence to the equilibrium of the cycle. We fix β2 to its default
value 0.999 (also the value commonly used in the GAN literature) and run Adam for 100 thousand
iterations. Figure 2 shows Adam’s trajectory as β1 is increased from 0 to 0.9. We first observe that

Figure 2: The relationship between β1 and the radius of the limit cycle to which Adam converges. The
gradient descent trajectory is plotted in red for reference. Each plot shows Adam (fixing β2 = 0.999)
with a different value of β1. The rightmost plot shows the effect of gradient noise on convergence.
The y-axis measures the mean final distance to the equilibrium relative to (divided by) the mean final
distance given by the best β1 value for a given noise level. Means are computed using 1000 trials.

Adam does not converge to the equilibrium at the origin. Instead, it appears to converge to a limit
cycle. Let D(xβ1 , x

∗) denote the distance of the final iterate to the origin for Adam run with a given
value of β1. We approximate the radius of the limit cycle with this value. The convergence of Adam
to a limit cycle corroborates the preceding discussion regarding the effective window size controlled
by β2. As the radius of the limit cycle shrinks, so must the window to average over the optimal
historical gradients. Secondly, the radius of this limit cycle grows as β1 grows. This corroborates
the first process explained in the preceding section. A nonzero β1 uses historical gradients which
contributes to divergence. In the right plot, we see that introducing noise appears to decrease the
sensitivity of convergence to choice of β1, however, a lower β1 is still optimal. These findings agree
with current literature: BigGAN trains with β1 = 0 and a minibatch size of 2048 (� standard 64).

Figure 3 examines the effect of β2 on convergence to the equilibrium of the cycle. We fix β1 = 0
because it was optimal in the previous experiment. In the extreme case where β2 = 0, Adam divides
each element of the gradient vector by the square root of the same element squared (plus ε). In other
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Figure 3: The relationship between β2 and the radius of the limit cycle to which Adam converges. The
gradient descent trajectory is plotted in red for reference. Each plot shows Adam (fixing β1 = 0.0)
with a different value of β2. The rightmost plot shows the effect of β2 on convergence. The y-axis
measures the final distance to the equilibrium relative to (divided by) the final distance given by the
best β2 value for a given noise level.

words, gAdamt ≈ gt/|gt| = sign(gt). This explains the piecewise linear trajectory of Adam in the
first plot. As β2 is increased, distance to the equilibrium decreases until β2 ≈ 0.642, at which point,
a sharp increase in distance is seen. The plot with β2 = 0.999 shows a limit cycle has formed.

4 CIFAR-10 Experiments

We ran experiments with DCGAN [18] trained using Goodfellow’s modified loss [8] on CIFAR-10
to see how the relationships uncovered above translate beyond the cycle problem to neural-network
based GANs. Figure 4 reveals, for a batch size of 128, β1 ∈ [0.5, 0.7] achieves lower Fréchet
inception distance (FID) score than β1 = {0.4, 0.8}. For a smaller batch size of 64, gradients are
noisier, and so β1 = 0.8 joins the group of top performers. This agrees with results above where
additional noise suggests larger optimal β1 is possible. Small values of β1, e.g., 0.1, performed
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Figure 4: Evolution of FID score for DCGAN during training on CIFAR10 for different values of β1,
averaged over five random initialisations. We decay β2 from 0.999 to 0.9 over the course of training.

poorly for both batch sizes, although marginally better for the larger batches. We also experimented
with varying β2 according to a cosine decay but found this did not appreciably affect results.

5 Conclusion

Adam’s success in training GANs is fortuitous. By examining Adam on a cycle problem, we illustrate
relationships between convergence rate, limit sets, β1, β2, and batch size. Our initial investigations
have shown that larger batch sizes can allow for lower β1 values. In future work, we aim to explore
the effects of β1 and β2 when much larger batch sizes are used, for example in BigGAN. Also
important is the fact that studying such a simple equilibrium problem is able to provide insights to
the performance of Adam on GANs.

In future work, we will explore Adam’s theoretical convergence on bilinear saddle point problems.
We expect insights gleaned there to help us improve Adam and push empirical GAN performance
even further.
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