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Abstract

Safety-critical autonomous systems often allow human users to interrupt their
operation as a safe-guard measure. However, human decisions are influenced
by cognitive biases and limitations which may lead to interruptions that result in
sub-optimal outcomes. A robust agent must avoid actions which might trigger such
interruptions. We formulate the problem of the negative interruptions as an instance
of the asymmetric multi-agent reinforcement learning, where the user is able to
observe the system’s latest action and decide whether to interrupt its execution
or not. Our formulation is closely related to robust reinforcement learning when
interruptions are taken as disturbance. We propose a modified independent Q-
learners solution where the user and the system learn their optimal policies together
in single-agent perspectives of the interaction. Empirical results indicate that the
convergence depends on the user’s reward function, and opponent modelling is
necessary for a general solution.

1 Introduction

Human decision-making deviates from rationality often due to cognitive biases and limitations. In
order to explain these deviations, earlier works tried to propose alternatives to expected utility theory
[1], and recently bounded rationality has emerged as a common framework for both machines and
humans [2]. Autonomous learning systems promise to help humans make rational decisions devoid
of negative cognitive biases. However most autonomous systems are not fully autonomous: they
provide ways for humans to interrupt their operation.

Previous works have focused on developing reinforcement learning methods that are safely interrupt-
ible [3], where humans can interrupt the agent in order to avoid negative consequences. However,
human interruptions are a part of the human decision-making and thus are affected by cognitive
biases and limitations. In this work, we are interested in those interruptions that result in negative
consequences. Negative interruptions are a form of the disuse of autonomous systems [4], where
human operators may learn to ignore an autonomous system’s recommendations or replace its actions
with their own. Recently, c-intervention games have been proposed to model the negative interrup-
tions where the system and the user disagree on the dynamics of the environment [5]. The user has
an erroneous model of the dynamics, and can replace the system’s actions as in interruptible policies.
The proposed solution concept is the Stackelberg equilibrium which assumes: the system commits to
a policy and, the user observes the system’s entire future commitment (i.e. policy).
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We re-formulate the negative interruptions problem as an instance of asymmetric multi-agent re-
inforcement learning [6], and make a complementary connection to robust reinforcement learning.
Our main contributions are: (1) We constrain the user to observe only the system’s latest action.
After observation, the user may override the action with another. We believe our setting is more
realistic for modelling human interruptions as it does not require full knowledge of the system’s
policy. The temporal intuition behind our choice is that the user and the system are operating in
different time-scales which allows the user to observe and interrupt before the system completes its
action. (2) We formulate the interruptions based on the disagreements between the agents’ optimal Q
functions instead of models, which allows us to apply model-free methods.

2 Problem Setting

Robust reinforcement learning aims at learning policies that are robust to bounded perturbations
(also called disturbances) of the environment. The robust optimisation task is often modelled
as a competitive game between an actor and a disturber [7]. In SA-rectangular robust RL [8],
the actor chooses policy π that maximises its expected returns G under the disturbed dynamics
P̄s,a = P̄ (s′|s, a) with the reward function R, while the disturber tries to minimise the same quantity
by disturbing the original dynamics of the environment Ps,a into P̄s,a. The introduced disturbances
are bounded for each (s, a) by εs,a ≥ 0 which results in the optimisation objective below;

max
π

min
P̄
{G(π, P̄ , R) : ||P̄s,a − Ps,a|| ≤ εs,a,∀s, a}.

Intuitively, this means the disturber can observe the last action and state (s, a), then choose a P̄s,a
since it is constrained for each (s, a) separately. Using this setting, we model the interrupting user
as the disturber, and the interruptions as disturbances. Our disturber differs from its robust RL
counter-part in two ways: (1) Instead of fully-competitive, it is a self-interested agent with its own
decision process, (2) Instead of perturbing the transitions of the environment directly, it alters them
by replacing the system’s actions before they execute. We will refer to the user as the disturber and
the system as the actor henceforth.

To see how the disturbances affect the transitions, define the single-agent problems of the ac-
tor and the disturber as their undisturbed MDPs M(A) = (S,A(A), T (A),R(A)), and M(D) =
(S,A(D), T (D),R(D)) respectively, whereA(D) = A(A). Since the actor and the disturber are in the
same environment, we will assume T (A) = T (D) = T . Keep in mind that the actor and disturber do
not have to be model-based, and T is simply where their transition observations would have come
from if they were alone in the environment. The multi-agent interaction between the actor and the
disturber is modelled by the Markov gameM = (S,A(D) ∪ {a0},A(A), T ′,R′(A),R′(D)), where
a0 is called the null action, T ′ defines the joint-action transition dynamics, andR′(A),R′(D) are the
modified reward functions of the actor and the disturber. If the disturber chooses any action other
than null, it replaces the actor’s action, otherwise the actor’s action is executed 1. The joint-action
transitions and the modified reward functions are defined as;

T ′(s′|s, a(A), s(D)) = 1(a(D) = a0)T (s′|s, a(A)) + 1(a(D) 6= a0)T (s′|s, a(D))

R′(A)(s, a(D), a(A)) = 1(a(D) = a0)R(A)(s, a(A)) + 1(a(D) 6= a0)R(A)(s, a(D))

R′(D)(s, a(D), a(A)) = 1(a(D) = a0)R(D)(s, a(A)) + 1(a(D) 6= a0)[R(D)(s, a(D))− c(s)]

where 1 is the indicator function and c(s) is the cost of interruption which effectively serves the
same purpose as εs,a2. If the disturber chooses the null action, actor’s action gets executed and thus
the disturber observes the rewardR(D)(s, a(A)). However, if the disturber chooses to interrupt with
a(D) 6= a0, then it observes a penalised version ofR(D)(s, a(D)).

Even though a joint-action dynamics model, T ′ in essence models a dynamically perturbed single-
action transition dynamics. If the actor commits to a policy π(A), the Markov game reduces to an
MDP for the disturber. Similarly for the actor, if the disturber commits to a policy π(D), it reduces
to a perturbed version ofM(A). If we assume that π(D)(a0|s) = 0,∀s then π(A) does not matter

1Null action allows us to subsume the interruption initiation function from [3] into the policy.
2Even though defined as c(s) for notational convenience, it can be easily extended as c(s, a).
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since actor loses the control entirely. On the other hand, if π(D)(a0|s) = 1,∀s the actor’s problem
reduces to M(A). We assume two limit behaviours with regard to the cost of interruption c(s),
limc(s)→∞ π(D)(a0|s) = 1 and limc(s)→0 π

(D)(a0|s) = 0.

3 Algorithms

The dynamics of a multi-agent environment are non-stationary and non-Markovian from the individual
perspectives of independent learners [9]. However, the transitions of the actor-disturber game T ′ have
special properties. Let’s assume the actor and the disturber are independent learners withM′(A) and
M′(D) as their independent perspectives of the Markov gameM. The transitions ofM′(D) depend
on the actor’s action only for a0, and follow T for any other action. The cost function c(s, a(A))
effectively determines whether the disturber will choose a0 at (s, a(A)) or not. For the constant cost
c(s, a(A)) = c, a high enough c will make a0 the optimal action for most states inM′(D). In the end,
theM′(D) is non-stationary and non-Markovian only for the transitions that involve the null action,
and c limits the non-stationarity ofM′(A).

We propose a modification to independent Q-learners where only the disturber’s update is modified.
If the disturber interrupts, it updates Q(D)(s, a(D)) with the penalised reward. However, if it takes
the null action, it updates Q(D)(s, a0) without the interruption penalty and performs a counter-factual
update for Q(D)(s, a(A)), as if it had interrupted (s, a(A)) with a(A). The counter-factual update
discourages the disturber from learning to replace the actions with themselves. The general update
rule is defined in algorithm 1. Different to the asymmetric Q-learning algorithm proposed in [6], our
disturber does not maintain a copy of the actor’s Q function.

Algorithm 1 Actor-Disturber Independent Q-Learning updates for (st, a
(A)
t , a

(D)
t , st+1)

Q(A)(st, a
(A)
t )← Q(A)(st, a

(A)
t ) + α(R′(A)(st, a

(D)
t , a

(A)
t ) + γV (A)(st+1)−Q(A)(st, a

(A)
t ))

Q(D)(st, a
(D)
t )← Q(D)(st, a

(D)
t ) + α(R′(D)(st, a

(D)
t , a

(A)
t ) + γV (D)(st+1)−Q(D)(st, a

(D)))

if a(D)
t = a0 then
Q(D)(st, a

(A)
t )← Q(D)(st, a

(A)
t )+α(R′(D)(st, a

(A)
t , a

(A)
t )+γV (D)(st+1)−Q(D)(st, a

(A)
t ))

end if

4 Experiments
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Doughnut
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Figure 1: Single-agent optimal policies of the actor (blue)
and the disturber (red) are different for the same starting
state. The robust policy of the actor (purple) goes through
the longer route to avoid interruptions.

The underlying problem of our ex-
perimental task is cooperative where
the actor is an interruptible au-
tonomous system helping its user.
The reward functions of the user is
defined as R′(D)(s, a(D), a(A)) =
1(a(D) = a0)R(A)(s, a(A)) +
1(a(D) 6= a0)[R(A)(s, a(D)) − c(s)].
For the ease of computation, we de-
fine a constant cost c(s) = c for all
the states. The discrepancy between
the actor and the disturber is caused
by the discounting. The actor uses ex-
ponential discounting, while the dis-
turber uses hyperbolic. Hyperbolic
discounting is known to capture time-
inconsistency bias of human decision-
makers [10] which leads to preference
reversals. Different methods of dis-
counting inevitably lead to different
Q functions, and possibly to different
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Figure 2: ∞-norm convergence of Q functions for c = 0.001, c = 0.5, and c = 25 (left to right).

optimal policies. The discrepancy between optimal behaviours encourages the disturber to replace
the actor’s actions. We approximate the hyperbolic Q-learning via multiple exponential Q functions
as proposed in [11]. Every update is performed according to the rule in algorithm 1.

Figure 1 shows the Food Truck environment which was proposed in [12] to demonstrate the negative
effects of hyperbolic discounting. In this setting, each restaurant type has a reward vector doughnut =
(10,−10), noodle = (0, 0), vegan = (−10, 20). When an agent goes into a restaurant state, it
receives the first reward and transitions into a terminal state at the next time-step, where it receives
the second. When alone in the environment, the actor correctly learns to go straight into the vegan
restaurant and preserves the vegan > doughnut ≥ noodle preference (blue trajectory). The disturber
correctly ignores the first doughnut restaurant and goes towards the vegan, yet the hyperbolic
discounting reverses its preference when it gets close to the second doughnut store (red trajectory).
The robust policy for the actor avoids passing the second doughnut store in order not to get interrupted
(purple trajectory).

Table 1 shows the outcomes of executing the converged joint policies in the environment
after training with three different cost parameters: c ∈ {0.001, 0.5, 25}. When the cost
of interruption is low (c = 0.001), actor’s operation is always interrupted, and the agents
end up following the red trajectory. In terms of robust RL, low cost is equivalent to a
loose bound εs,a, allowing for big disturbances. For a high cost of interruption (c = 25)
the disturber is constrained with a small εs,a preventing it from disturbing the transitions.

Table 1: Interruption costs and outcomes

Cost Outcome
0.001 Single-agent Disturber (Red)
0.5 Robust (Purple)
25 Single-agent Actor (Blue)

Thus, with c = 25 the disturber learns not to interrupt
at all and the actor is allowed to execute its single-agent
optimal policy. When c = 0.5, the disturber learns to
interrupt right before the second doughnut store, but the
actor is able to learn the robust policy and avoid inter-
ruptions. Even though sub-optimal for the single-agent
case, the robust policy is the optimal outcome for the
actor-disturber case. Figure 2 shows ||Qt+1 −Qt||∞ for
the same costs c ∈ {0.001, 0.5, 25} . In all three cases,
hyperbolic functions converge reasonably well, while for
c = 0.5 the exponential function continues changing even though the outcome converges to the robust
trajectory (purple).

5 Conclusion and Future Work

We have established a connection between robust RL, c-intervention games and interruptible agents.
Modelling the human interruptions of agents as multi-agent interaction will allow us to learn correct
biases from good interruptions, and be robust to bad ones. For future work, we will extend this
framework to continuous or large-scale discrete environments and focus on exploring the game-
theoretic properties of the underlying interaction.
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