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Abstract

Recent years have seen a blooming application of machine learning models that are
trained via artificially constructed differentiable games. Nonlinear optimization,
which has a long history and a rich geometric theory, can be viewed as a special
differentiable game where there is a single player or all players share a common
cost function and control all variables. In this work, we aim at generalizing the
ideas and techniques developed for nonlinear optimization to differentiable games.
In particular, we develop a generic framework to connect the landscape of an
empirical game and its population counterpart. This enables us to characterize the
geometric landscape of the empirical risk from the landscape of its population risk,
which is typically easier to analyze.

1 Introduction

Game theory provides a mathematical framework to model, reason, and analyze the interactions
between several decision-makers, referred to as players, with oftentimes conflicting objectives. A
game is an interactive situation in which each player’s cost or utility depends not only on his/her
own actions but also on those taken by the other players. For example, the time it takes for a driver
to get home depends not only on the route he/she chooses but also on the other drivers’ choices.
Differentiable games – games with continuous decision variables and differentiable cost functions
– have been gradually adopted to model many signal processing, communication, and networking
problems in the last two decades (see [1, 16, 7] and references therein). More importantly, the
last few years have seen a blooming application of machine learning models that are trained via
artificially constructed differentiable games, including generative adversarial networks [6], adversarial
training [10], reinforcement learning [17], intrinsic curiosity [13], and imaginative agents [14].

The mathematical formulation of differentiable games is intimately connected to several branches of
optimization. The presence of multiple cost functions, one for each player, is tied with multi-objective
or vector optimization [4, 8], though they differ in the control of the variables. Partial control of
variables relates games to distributed optimization [3], although a common objective function is
usually assumed in the latter context. When there is a single player, or all players share a single
cost function and control all variables, a differentiable game reduces to nonlinear programming or
optimization [12, 2], where a single smooth objective function is optimized in a centralized manner.

Empirical risk minimization is a standard framework in machine learning, where the data generating
distribution can only be accessed through data samples. The correspondence of the geometric
landscape of empirical risk and that of its population counterpart was first studied in [11] for non-
convex losses that is strongly Morse, namely, the Hessian of the population risks cannot have zero

Abstract for: Smooth Games Optimization and Machine Learning Workshop (NeurIPS 2019), Vancouver,
Canada.



eigenvalues at or near the critical points. This theory was later extended to a more general framework
where the strongly Morse assumption is removed [9].

For many differentiable games used in machine learning, including generative adversarial nets and
adversarial training, the data generating distribution can also only be accessed through data samples.
Motivated by this observation, the work aims at generalizing the ideas and techniques developed
for characterizing the geometry of non-convex optimization problems to differentiable games. In
particular, we develop a generic framework to connect the landscape of an empirical game and its
population counterpart. This enables us to characterize the geometric landscape of the empirical risk
from the landscape of its population risk, which is typically easier to analyze.

2 Problem Formulation

Mathematically, a differentiable non-cooperative (also known as strategic or normal-form) game
consists of a finite number of K rational players, each having a strategy set (or decision or action
space) Xk ⊂ Rpk and a cost function gk(·), k ∈ [K] , {1, · · · ,K}. The cost function gk(·) is a
differentiable function of the form gk : X1 ×X2 × · · · ×XK → R : (x1,x2, . . . ,xK)→ gk(x),
where xk ∈ Xk is the strategy of player k, x = (x1,x2, . . . ,xK) ∈ X ⊂ Rp is the strategy profile,
X = X1 × X2 × · · · × XK is the direct product of the players’ strategy sets, and p =

∑K
k=1 pk.

Denote x−k = (x1, . . . ,xk−1,xk+1, . . . ,xk) as the strategies taken by all players other than the
player k. With some abuse of notation, we also write x = (xk,x−k) and gk(x) = gk(xk,x−k).

The rationality of the players means that each player’s goal is to minimize its own cost function
gk(xk,x−k) by controlling its own strategy xk while explicitly knowing that gk(xk,x−k) is also
impacted by the other players’ strategies x−k. The non-cooperative games defined here are simulta-
neous games where all players move simultaneously, or if they do not, the later players are unaware
of the earlier players’ actions, making them effectively simultaneous. A two-player, zero-sum game
has K = 2 players where g1(x) = −g2(x) , g(x). It becomes a (sequential) minimax game
minx1 maxx2 g(x1,x2) when the min-player moves first, and the max-player who moves second
can observe the action taken by the first player and adjust its action accordingly.

The data generating distribution in many games used in machine learning can only be accessed
through data samples, that is, the cost functions are empirical risks (denoted as f(·)) that constructed
from finite number of samples. Note that the population counterpart (denoted as g(·)) depends on
infinite data can be viewed as the expectation of its empirical risk with respect to the randomly
generated data samples. Previous works on the geometry of non-convex optimization have shown that
the geometry of the population risk is typically easier to analyze [11, 9]. This inspires us to build a
general theory that connects the landscape of the empirical game to its population counterpart, which
enables us to analyze the geometry of the empirical game from the landscape of its population game.
One can refer to Section 4 for a simple example of empirical game and its population counterpart.

3 Main Results

In this section, we present our main results on the connection between the landscape of the empirical
game and its population counterpart. Recall that we denote x = (x1,x2, . . . ,xK) ∈ X ⊂ Rp as the
strategy profile and X = X1 ×X2 × · · · ×XK as the direct product of the players’ strategy sets.
Here, x can be viewed as the parameter vector that needs to be optimized. Define B(l) as a compact
and connected subset of X with l being a problem-specific parameter. For k ∈ [K], we denote fk(x)
and gk(x) as the empirical risk and the corresponding population risk for player k, respectively.

Differentiability of the cost functions allows the use of calculus tools to characterize local equilibria,
a unique feature that is not available to other types of games. Similar to the optimality conditions in
optimization, these characterizations form the theoretical and algorithmic foundation for differentiable
game optimization. Given a game with cost functions {gk}k∈[K], the game gradient is defined as the
gradient of the costs with respect to a player’s own variables, namely,

gradg(x) ,
[
(∇1g1(x))

> (∇2g2(x))
> · · · (∇KgK(x))>

]> ∈ Rp,

where∇kgk(x) denotes the gradient of gk(x) = gk(xk,x−k) with respect to xk. The game Jacobian
is then the following (p× p)-matrix of second-derivatives
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Jg(x) ,


∇2

11g1 ∇2
12g1 · · · ∇2

1Kg1
∇2

21g2 ∇2
22g2 · · · ∇2

2Kg2
...

...
...

...
∇2

K1gK ∇2
K2gK · · · ∇2

KKgK

 ∈ Rp×p,

where [Jg]kj(x) , ∇2
kjgk(x) ∈ Rpk×pj is a submatrix of the Hessian of gk(x). Note that the

game Jacobian is a square and generally non-symmetric matrix. A critical point x is a locally stable
equilibrium if all the eigenvalues of Jg(x) have strictly positive real parts, and is a locally unstable
equilibrium if at least one of the eigenvalues of Jg(x) have strictly negative real parts.

Optimality conditions characterizing local equilibria are foundational to differential game optimiza-
tion. For an unconstrained game, i.e., X = Rp, if x? is a local Nash equilibrium, then

gradg(x
?) = 0 and [Jg]kk(x

?) � 0, k ∈ [K].

For constrained games, the optimality conditions are direct generalizations of the Karush-Kuhn-
Tucker (KKT) conditions in nonlinear optimization [15].

Next, we introduce the assumptions needed to build our theory.
Assumption 3.1. The population risks {gk(x)}Kk=1 satisfy

min
k∈[K]

min
i∈[pk]

|λi([Jg]kk(x))| > η and min
j∈[p]
|Re{λj([Jg](x))}| > η

in the set D , {x ∈ B(l) : ‖gradg(x)‖2 < ε} for certain positive constants ε, η. Here, λmin(·)
denotes the minimal eigenvalue and Re{·} picks the real part of a complex number.
Assumption 3.2. (Gradient proximity). The game gradients of the empirical risk and population risk
satisfy

sup
x∈B(l)

‖gradf (x)− gradg(x)‖2 ≤
ε

2
.

Assumption 3.3. (Jacobian proximity). The game Jacobians of the empirical risk and population
risk satisfy

sup
x∈B(l)

‖Jf (x)− Jg(x)‖2 ≤
η

2
.

Note that Assumption 3.1 is based on the strongly Morse condition of the population risks{gk(x)}Kk=1.
Assumptions 3.2 and 3.3 can be satisfied with high probability when one has enough data samples.
We are now in the position to present our main theory.
Theorem 3.1. Denote {fk}k∈[K] and {gk}k∈[K] as the empirical risks and the corresponding
population risks for the K players in a differentiable game, respectively. Let D be a maximally
connected and compact component of the set D with a C2 boundary ∂D. Under Assumptions 3.1, 3.2,
and 3.3 stated above, the following statements hold:

(a) If {gk}k∈[K] has one (no, resp.) local Nash equilibrium in D, then {fk}k∈[K] has one (no, resp.)
local Nash equilibrium in D.

(b) If {gk}k∈[K] has one (no, resp.) non-Nash equilibrium in D, then {fk}k∈[K] also has one (no,
resp.) non-Nash equilibrium in D.

(c) If {gk}k∈[K] has one (no, resp.) locally stable equilibrium in D, then {fk}k∈[K] has one (no,
resp.) locally stable equilibrium in D.

(d) If {gk}k∈[K] has one (no, resp.) locally unstable equilibrium in D, then {fk}k∈[K] also has one
(no, resp.) locally unstable equilibrium in D.

The key technical ingredient in the proof of Theorem 3.1 is a classical result in differential topology,
which states that the total index of a vector field in a region is fully determined by its behavior near
the boundary of that region [15, 5, 9]. Since this fundamental result does not require the vector
field to be the gradient of a function, it applies without modification to the vector field of the game
gradient. The above theorem indicates that the correspondence between locally stable and unstable
equilibria should be relatively straightforward, as they are similar to local minima and strict saddles
in optimization.

3



4 Simulations

In this section, we conduct numerical experiments to further support our theory. For simplicity, we
test our theory on a two-player, zero-sum game (K = 2) with empirical risks being f1(x1, x2) =
−f2(x1, x2) , f(x1, x2). Denote q? = [1/4;−1; 1/2;−1/4] ∈ R4 as the true coefficients of the
model. Assume that we only have access to its noisy samples qm = q? + em, m ∈ [M ], where
em denotes the observation error with entries following the Gaussian distribution N (0, 1). We then
construct the cost function as

f(x1, x2) , [x41 x21 x21x
2
2 x22]

1

M

M∑
m=1

qm = [x41 x21 x21x
2
2 x22](q

? +
1

M

M∑
m=1

em).

Note that the corresponding population risk is then given as

g(x1, x2) = Ef(x1, x2) = [x41 x21 x21x
2
2 x22]q

? =
1

4
x41 − x21 +

1

2
x21x

2
2 −

1

4
x42,

which has seven critical points: (x1, x2) = (0, 0), (±
√
2, 0), (±1,±1). Among these critical points,

(0, 0), (±
√
2, 0) are locally unstable equilibria and (±1,±1) are locally stable equilibria. We present

the landscapes of the population risk and two realizations of the empirical risk with M = 100 and
M = 200 in Figure 1, which indicates a direct correspondence between the locally stable equilibria
and locally unstable equilibria of the empirical game and its population counterpart. In addition,
for this particular two-player, zero-sum game, one can verify that the four locally stable equilibria
(x1, x2) = (±1,±1) are also local Nash equilibria.
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Figure 1: The landscape of a two-player, zero-sum game: (a) Population risk. (b, c) Two realizations
of the empirical risk. We use the red star and cross to denote the locally stable equilibria and locally
unstable equilibria of the population risk, respectively, and use the black circle and diamond to denote
the locally stable equilibria and locally unstable equilibria of the empirical risk, respectively.

5 Conclusions

In this work, we built a general theory that connects the geometric landscape of the empirical game to
its population counterpart by generalizing the ideas and techniques developed for characterizing the
geometry of non-convex optimization problems to differentiable games. In particular, we developed
a theory that establishes a correspondence of the empirical game and its population counterpart’s
critical points. This one-to-one correspondence between the landscape of empirical risk and that of
the population risk makes it possible for us to characterize the geometric landscape of the empirical
risk from the landscape of its population counterpart.
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