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Abstract
Due to the non-symmetric nature of the game Jacobian, many first-order meth-
ods used to find Nash equilibria for differentiable games, such as vanilla gradient
descent and its variants, often perform poorly and exhibit relatively-slow conver-
gence, oscillation around equilibria, or even divergence. Inspired by the close
connection between differentiable games and classical nonlinear optimization, the
latter of which has an array of well-established principles and methods in algo-
rithmic design, this paper develops a new algorithm for smooth games based on
the cubic-regularization method. The algorithm approximates each player’s cost
function as a quadratic function regularized by a cubic term, an idea originally
proposed by Nesterov and Polyak as a theoretically guaranteed extension of New-
ton’s method. The fixed points of the proposed algorithm are shown to coincide
with second-order Nash equilibria of the given game. For two-player zero-sum
games, these fixed points are also stable under the gradient flow dynamic. The
theoretical findings are supported by numerical experiments.

1 Introduction

Differentiable games have been widely used and studied in signal processing [2] and wireless com-
munication networks [9] as a powerful modeling framework. Recent literature has also reported
several significant successes in training machine learning models with artificially constructed dif-
ferentiable games, such as generative adversarial networks (GAN) [8], reinforcement learning [20],
adversarial training [15], intrinsic curiosity [21], imaginative agents [22], and so on. Differentiable
games are closely related to classical nonlinear optimization problems. The presence of multiple cost
functions in games is reminiscent of multiple objective functions in vector optimization [6], while
the partial control of the strategy profile shares similarity with distributed optimization [4]. When
all players share the same cost function and control all variables, a differentiable game reduces to a
centralized nonlinear optimization [3, 19]. Motived by this close connection, we focus on the inves-
tigation of differentiable games from an optimization perspective and generalize the methods used
in nonlinear optimization to differentiable games.

The wide application of nonlinear optimization in science and engineering owes in part to the
plethora of numerical algorithms developed by the optimization community [19]. Even simple lo-
cal search algorithms such as gradient descent and its varaints have superior practical performance
and solid theoretical ground [11, 12, 13, 14]. This is in sharp contrast to algorithms used in game
optimization. For example, vanilla gradient descent and many of its variants can very often lead to
limit oscillatory behavior, rather than converge to an equilibrium [16, 17]. This is a consequence of
the non-symmetric nature of the game Jacobian and the complex optimization geometry it entails.
Nonetheless, optimization literature provides an array of principles, ideas, and methods in the design
of numerical procedures. Some of the most effective algorithms for classical optimization compute
next iterate by minimizing a suitable model of the objective function. The model is usually formed
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using function and derivative information at the current iterate. Exemplar algorithms obtained in
this manner include gradient descent, the Frank-Wolfe algorithm [7], (quasi-)Newton methods [19],
and Nesterov-Polyak’s cubic regularization [18].

Contribution Inspired by the Nesterov-Polyak’s cubic regularization used in nonlinear programs,
we develop a game optimization algorithm based on the cubic regularization to resolve the previ-
ously mentioned oscillatory and non-convergent issues of some existing algorithms in this work. In
particular, in order to find Nash equilibria, we solve a sequence of iteratively constructed simple
optimization or game subproblems. We demonstrate that the fixed points of the proposed algorithm
coincide with second-order Nash equilibria of the given game. For two-player zero-sum games,
these fixed points are also stable under the gradient flow dynamic.

2 Preliminaries

In this section, we present some background on differentiable games, which are games with differ-
entiable cost functions and continuous decision variables.

Define [K]
.
= {1, . . . ,K} as the set of positive integers up to K. For a K-player differentiable, non-

cooperative game, we assume that each player k has a strategy set Xk ⊂ Rpk and a differentiable
cost function fk : X1 × X2 × · · · × XK → R. Denote X = X1 × X2 × · · · × XK ⊂ Rp with
p =

∑K
k=1 pk and x = (x1,x2, . . . ,xK) ∈ X as the direct product of the players’ strategy sets

and the strategy profile, respectively. Here, each xk ∈ Xk denotes the strategy or decision of player
k. Define x−k

.
= (x1, . . . ,xk−1,xk+1, . . . ,xk) as a set that contains all players’ strategies except

that of player k. We frequently abuse notation to write x = (xk,x−k) and fk(x) = fk(xk,x−k).
We also assume that all the K players are rational, that is, each player aims at minimizing its own
cost function fk(xk,x−k) by controlling its own optimization variable xk. In addition, each player
explicitly knows that its own cost function fk(xk,x−k) is impacted by the other players’ strategies
x−k. A K-player differentiable game reduces to a two-player zero-sum game when K = 2 and
f1(x1,x2) = −f2(x1,x2) = f(x1,x2).

A Nash equilibrium is a strategy profile x⋆ = (x⋆
k,x

⋆
−k) ∈ X such that

fk(x
⋆
k,x

⋆
−k) ≤ fk(xk,x

⋆
−k), ∀ xk ∈ Xk for all k ∈ [K],

or equivalently, x⋆
k solves the following optimization problem

minimize
xk∈Xk

fk(xk,x
⋆
−k) for all k ∈ [K].

Nash equilibria are therefore pure strategy profiles of the game from which no player can do better
by unilaterally changing its strategy. A strategy profile x⋆ = (x⋆

k,x
⋆
−k) ∈ X is a local Nash

equilibrium [23, 10] if there exist open sets Wk ⊂ Xk containing xk and for each k ∈ [K], one
has

fk(x
⋆
k,x

⋆
−k) ≤ fk(xk,x

⋆
−k), for all xk ∈ Wk.

Denote ∇kfk(x) as the gradient of player k’s cost function fk(xk,x−k) with respect to xk. The
game gradient is then defined as

g(x)
.
=

[
(∇1f1(x))

⊤ (∇2f2(x))
⊤ · · · (∇KfK(x))⊤

]⊤ ∈ Rp.

Denote Jkl(x)
.
= ∇2

klfk(x) as the (pk × pl)-block submatrix of the Hessian of fk(·). The game
Jacobian is then defined as

J(x)
.
= [∇2

klfk(x)]
K
k,l=1 ∈ Rp×p,

which is generally non-symmetric.

For an unconstrained game, a point x⋆ satisfies the first-order optimality condition g(x⋆) = 0 is
called a first-order Nash critical point of the game, and a point x⋆ satisfies the additional second-
order optimality condition Jkk(x

⋆) ⪰ 0, k ∈ [K] is then called a second-order Nash equilib-
rium [23]. In addition, if a second-order Nash equilibrium x⋆ further satisfies that Jkk(x

⋆) ≻
0, k ∈ [K], it is also a local Nash equilibrium.
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3 Cubic-Regularization Based Methods

First-order methods relying on the game gradient, while being favored in large-scale machine
learning applications, also exhibit many deficiencies in game context, including but not limited
to relatively-slow convergence, oscillation around equilibria or even divergence, sensitivity to hyper-
parameters, and stagnation at high training errors [24]. We develop a new algorithm based on
Nesterov-Polyak’s cubic regularization [18] that builds local approximate models using the second-
order derivative information encoded in the game Jacobian and show that its fixed points coincide
with the second-order Nash equilibria. For two-player zero-sum games, these fixed points are also
stable under the gradient flow dynamic.

3.1 The proposed algorithm

Inspired by the Nesterov-Polyak’s cubic regularization [18], we approximate the cost function fk(x
t)

for the kth player around iterate xt as

fCR
k (δk;x

t)
.
= fk(x

t) + δ⊤k ∇kfk(x
t) +

1

2
δ⊤k ∇2

kkfk(x
t)δk +

ρk
3
∥δk∥32

for some ρk > 0. Here, the superscript t denotes quantities evaluated at the current iterate xt. Note
that fCR

k (δk;x
t) provides an upper bound on fk(x

t
k+δk,x

t
−k) as a function of δk when ρk is greater

than the Lipschitz constant of the (partial) Hessian Jkk of the cost function fk(·). After finding the
minimizer δtk = TCR

k (xt) for each approximation fCR
k (δk;x

t), one then performs the update

xt+1
k = xt

k + δtk = xt
k + TCR

k (xt), k ∈ [K]. (1)

3.2 Stability analysis

Next, we analyze the stability of our proposed algorithm.
Theorem 3.1. x⋆ is a fixed point of the proposed method (1) if and only if it is a second-order Nash
equilibrium satisfying the following optimality conditions

g(x⋆) = 0, and Jkk(x
⋆) ⪰ 0, k ∈ [K]. (2)

Proof. Denote J⋆
kk = Jkk(x

⋆) and g⋆
k = gk(x

⋆). Note the characterization in [18, 5]: δ⋆k is a global
minimizer of fCR

k (δk;x
⋆) if and only if

∇fCR
k (δ⋆k;x

t) = (J⋆
kk + ρk∥δ⋆k∥2)δ

⋆
k + g⋆

k = 0, and J⋆
kk + ρk∥δ⋆k∥2I ⪰ 0, k ∈ [K]. (3)

In addition, δ⋆k is unique whenever J⋆
kk + ρk∥δ⋆k∥2I ≻ 0. On one hand, if x⋆ satisfies (2), then

clearly ∇fCR
k (0;x⋆) = 0 and J⋆

kk + ρk∥0∥2I = J⋆
kk ⪰ 0, so (3) is satisfied by the solution

δ⋆k = TCR
k (x⋆) = 0, implying that x⋆ is a fixed point of (1). On the other hand, if x⋆ is a fixed

point of (1), that is, δ⋆k = TCR
k (x⋆) = 0 is a solution of (3), by plugging in δ⋆k = 0 into (3) we have

g⋆
k = 0 and J⋆

kk ⪰ 0 for k ∈ [K], implying that x⋆ is a second-order Nash equilibrium.

Theorem 3.2. For two-player zero-sum games, if x⋆ is a fixed point of the proposed method (1) with
J⋆
kk ≻ 0, k ∈ {1, 2}, then it is also a locally stable equilibrium under the gradient flow dynamic,

namely, all the eigenvalues of the game Jacobian J(x⋆) have strictly positive real parts.

Proof. By definition, it suffices to show that all the eigenvalues of the game Jacobian J⋆ .
= J(x⋆)

have strictly positive real parts. For any λ being an eigenvalue of J⋆, let v be the corresponding
eigenvector. We observe that

vHJ⋆v = λ ⇐⇒ (vHJ⋆v)H = λH ⇐⇒ vHJ⋆Hv = λ,

where (·)H and (·) denote the conjugate transpose and conjugate operations, respectively. Therefore,

Re(λ) =
λ+ λ

2
= vH

(
J⋆ + J⋆H

2

)
v = vH

[
J⋆
11

J⋆
22

]
v > 0,

where we have used the special structure of the game Jacobian in two-player zero-sum games J⋆ =[
J⋆
11 J⋆

12
J⋆
21 J⋆

22

]
∈ Rp×p with J⋆

12 = −J⋆H
21 . This completes the proof.
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4 Simulations

In this section, we test the proposed method and theory on the following two-player zero-sum game
with

f1(x, y) = −f2(x, y) = f(x, y) = 2x2 +
1

2
y2 − 4xy +

4

3
y3 − 1

4
y4.

First of all, the first-order Nash critical points of this game are given by those points with zero game
gradients, i.e.,

g(x, y) =

[
∇xf1(x, y)
∇yf2(x, y)

]
=

[
4x− 4y

−(y − 4x+ 4y2 − y3)

]
=

[
0
0

]
,

which gives that z1 = (0, 0), z2 = (1, 1), and z3 = (3, 3). The game Jacobians evaluated at these
points are then

J(z1) =

[
4 −4
4 −1

]
, J(z2) =

[
4 −4
4 −6

]
, and J(z3) =

[
4 −4
4 2

]
.

Note that z1 and z3 are locally stable equilibria since all their eigenvalues have strictly positive
real parts, and z3 is the only second-order Nash equilibrium among these critical points. To show
that the proposed cubic regularization based method is capable of locating the second-order Nash
equilibrium, we apply it to this two-player zero-sum game and record its trajectory on the landscape
of the objective function in Figure 1 (a) with initial point (3,−1). We also implement the gradient
descent and the CESP (curvature exploitation for the saddle point problem) method [1] for compari-
son, both with a step size 0.02. The distance between the current step (z) and the second-order Nash
equilibrium (z3) is recorded in Figure 1 (b).

Note that gradient descent converges to a locally stable equilibrium z1 which is not a second-order
Nash equilibrium. The CESP method is designed to avoid this case and converge to a second-order
Nash equilibrium. Although both the CESP method and cubic regularization method converge to
the second-order Nash equilibrium, the proposed cubic regularization method converges faster than
the CESP method by a large margin and is much more robust to its hyperparameters.

(a)

0 50 100 150 200
Iteration number

1

2

3

4

5

Cubic regularization
Gradient descent
CESP

(b)

Figure 1: (a) The optimization trajectory of the proposed cubic regularization method, gradient
descent, and the CESP method, when initialized at (3,−1). (b) The distance between the current
step and the second-order Nash equilibrium.

5 Conclusions

In this work, we investigated the computation of local Nash equilibria for differentiable games from
an optimization perspective and generalized the methods used in nonlinear optimization to game set-
tings. In particular, we developed a new algorithm based on Nesterov-Polyak’s cubic regularization
for differentiable games by building local approximations to each player’s cost function using the
second-order derivatives. We verified both theoretically and numerically that the fixed points of the
proposed algorithm coincide second-order Nash equilibria. Additionally, for two-player zero-sum
game, a fixed point with positive-definite partial Jacobian is also a locally stable equilibrium.
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