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Abstract

Many tasks in modern machine learning can be formulated as finding equilibria in
sequential games. In particular, two-player zero-sum sequential games, also known
as minimax optimization, have received growing interest. It is tempting to apply
gradient descent to solve minimax optimization given its popularity in supervised
learning. However, we note that naive application of gradient descent fails to find
local minimax – the analogy of local minima in minimax optimization, since the
fixed points of gradient dynamics might not be local minimax. In this paper, we
propose Follow-the-Ridge (FR), an algorithm that locally converges to and only
converges to local minimax. We show theoretically that the algorithm addresses the
limit cycling problem around fixed points, and is compatible with preconditioning
and positive momentum. Empirically, FR solves quadratic minimax problems and
improves GAN training on simple tasks.

1 Introduction

We consider differentiable sequential games with two players: a leader who can commit to an
action, and a follower who responds after observing the leader’s action. Particularly, we focus on the
zero-sum case of this problem which is also known as minimax optimization, i.e.,

min
x∈Rn

max
y∈Rm

f(x,y).

Applications of minimax optimization include generative adversarial networks (GANs) [9, 1], ad-
versarial training [14] and primal-dual reinforcement learning [6, 3]. In these machine learning
applications, finding the global minimax may be intractable due to non-convex landscapes. It is then
natural to consider finding the local surrogate, known as local minimax [11].

The vanilla algorithm for minimax optimization is gradient descent-ascent (GDA), i.e., both players
take a gradient update simultaneously. GDA is known to suffer from two drawbacks. First, it has
undesirable convergence properties: it fails to converge to some local minimax, and can converge to
fixed points that are not local minimax [11, 5]. Second, GDA exhibits strong rotation around fixed
points, which requires using very small learning rates [16, 2] to converge.

In this paper, we propose Follow-the-Ridge (FR), an algorithm for minimax optimization that
addresses both issues. We summarize our main contributions as follows:
• We prove that FR has exact local convergence to local minimax points. Previously, this property

is only known to be satisfied when the leader moves infinitely slower than the follower in
gradient descent-ascent [11, 7].
• We show that FR addresses the limit cycling problem around fixed points and hence allows us

to use a much larger learning rate.
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• We prove that our algorithm – FR is compatible with standard acceleration techniques such as
preconditioning and positive momentum, which can speed up convergence significantly.
• We further show that our algorithm can be adapted to non-zero-sum games (general Stackelberg

games [7, 23]) with similar theoretical guarantees.
• Finally, we demonstrate empirically the effectiveness of our algorithm in both quadratic minimax

problems and GAN training.

2 Preliminaries

We consider sequential games with two players where one player is deemed the leader and the other
the follower. We assume that the leader’s action is x ∈ Rn, and the follower’s action is y ∈ Rm. The
leader aims to minimize the cost function f(x,y) while the follower aims at maximizing f(x,y).
The only assumption we make on the cost function is the following.
Assumption 1. f is twice differentiable. ∇2

yyf is invertible (i.e., non-singular).

The global solution to minx maxy f(x,y) is an action pair (x∗,y∗), such that y∗ is the global
optimal response to x∗ for the follower, and that x∗ is the global optimal action for the leader
assuming the follower always play the global optimal response. However, finding this global solution
is often intractable especially when both players are parameterized by deep neural networks; therefore,
we follow [11] and take local minimax as the local surrogate.
Definition 1 (local minimax). (x∗,y∗) is a local minimax for f(x,y) if (1) y∗ is a local maximum
of f(x∗, ·); (2) x∗ is a local minimum of φ(x) := f(x, r(x)), where r(x) is the implicit function
defined by ∇yf(x,y) = 0 in a neighborhood of x∗ with r(x∗) = y∗.

The notion of local minimax is truly a local property in that it is (almost) completely characterized by
the derivatives of f at (x∗,y∗). Specifically, let

∇f(x∗,y∗) =

[
∇xf
∇yf

]
, ∇2f(x∗,y∗) =

[
Hxx Hxy

Hyx Hyy

]
.

Then∇f(x∗,y∗) = 0, Hyy 4 0 and Hxx −HxyH
−1
yyHyx < 0 is a necessary condition for being

a local minimax. Meanwhile, ∇f(x∗,y∗) = 0, Hyy ≺ 0, and Hxx − HxyH
−1
yyHyx � 0 is a

sufficient condition for being a local minimax.

Figure 1: Relation between local Nash, local
minimax and gradient descent-ascent.

Local minimax is a necessary condition for being a local
Nash [20], which is the proper local solution concept for
simultaneous games. However, the stable limit points of
GDA, roughly speaking the points GDA locally converges
to, are a different superset of local Nash [11]. The relation
between the three sets of points is illustrated in Fig. 1.

3 Follow the Ridge

We propose a novel algorithm, which we call Follow-the-Ridge (FR), for minimax optimization. The
algorithm modifies gradient descent-ascent by applying an asymmetric preconditioner. The update
rule is described below.

Algorithm 1: Follow-the-Ridge (FR). Differences from gradient descent-ascent are shown in blue.
1 for t = 1, ..., T do
2 xt+1 ← xt − ηx∇xf(xt,yt) . gradient descent
3 yt+1 ← yt + ηy∇yf(xt,yt) + ηxH

−1
yyHyx∇xf(xt,yt) . modified gradient ascent

The main intuition behind FR is the following. Suppose that yt is a local minimum of f(xt, ·). Let
r(x) be the implicit function defined by∇yf(x,y) = 0 around (xt,yt), i.e., a ridge. By definition,
a local minimax always lie on a ridge; hence, it is intuitive to follow the ridge’s direction during
learning. However, because ∇yf(xt,yt) = 0, one step of gradient descent-ascent will take (xt,yt)
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to (xt − ηx∇xf,yt), which is off the ridge. In other words, gradient descent-ascent tends to drift
away from the ridge. The correction term we introduce is

∇xr(x) (−ηx∇xf(xt,yt)) = ηxH
−1
yyHyx∇xf.

It would bring yt to yt + ∇xr(x)(xt+1 − xt) ≈ r(xt+1), thereby encouraging both players to
stay along the ridge. When (xt,yt) is not on a ridge yet, we expect the −ηx∇xf term and the
ηxH

−1
yyHyx∇xf term to move parallel to the ridge, while the ηy∇yf term brings (xt,yt) closer to

the ridge. Our main theoretical result is the following theorem.
Theorem 1 (Exact local convergence). The Jacobian of FR has only real eigenvalues at fixed points.
With a suitable learning rate, all strictly stable fixed points of FR are local minimax, and all local
minimax are stable fixed points of FR.

The proof is mainly based on the following observation. Let c = ηy/ηx. Then at a fixed point
(x∗,y∗), the Jacobian of FR is given by

J = I− ηx
[

I
−H−1

yyHyx I

] [
Hxx Hxy

−cHyx −cHyy

]
,

which is similar to

M =

[
I

H−1
yyHyx I

]
J

[
I

−H−1
yyHyx I

]
= I− ηx

[
Hxx −HxyH

−1
yyHyx Hxy

−cHyy

]
.

Therefore, the eigenvalues of J are those of I + ηyHyy and those of I− ηx(Hxx −HxyH
−1
yyHyx),

which are all real. Moreover, when (x∗,y∗) is a local minimax, one can show that the spectral radius
of the Jacobian satisfies ρ(J) ≤ 1, i.e., (x∗,y∗) is a stable limit point. On the other hand, when
ρ(J) < 1, (x∗,y∗) must be a local minimax.

4 Extending the Algorithm

We now discuss several extension of FR that preserves the theoretical guarantees.

Preconditioning: To speed up the convergence, it is often desirable to apply a preconditioner on the
gradients that compensates for the curvature. For FR, the preconditioned variant is given by[

xt+1

yt+1

]
←
[
xt
yt

]
−
[

I
−H−1

yyHyx I

] [
ηxP1∇xf
−ηyP2∇yf

]
(1)

We can show that with any constant positive definite preconditioners P1 and P2, the local convergence
behavior of Algorithm 1 remains exact.

Momentum: Another important technique in optimization is momentum, which speeds up con-
vergence significantly both in theory and in practice [19, 21]. We show that momentum can be
incorporated into FR, which gives the following update rule:[

xt+1

yt+1

]
←
[
xt
yt

]
−
[

I
−H−1

yyHyx I

] [
ηx∇xf
−ηy∇yf

]
+ γ

[
xt − xt−1

yt − yt−1

]
. (2)

Because all of the Jacobian eigenvalues are real, we can show that momentum speeds up local
convergence in a similar way it speeds up single objective minimization.
Theorem 2. For local minimax (x∗,y∗), let α = min

{
λmin(−Hyy), λmin(Hxx −HxyH

−1
yyHyx)

}
,

β = ρ
(
∇2f(x∗,y∗)

)
, κ := β/α. Then FR converges asymptotically to (x∗,y∗) with a rate Ω(κ−2);

FR with a momentum parameter of γ = 1−Θ
(
κ−1

)
converges asymptotically with a rate Ω(κ−1).2

This is in contrast to gradient descent-ascent, whose complex Jacobian eigenvalues prevent the use
of positive momentum. Instead, negative momentum may be more preferable [8], which does not
achieve the same level of acceleration.

Non-zero-sum games: In non-zero-sum sequential games, the notion of equilibrium is captured by
Stackelberg equilibrium, a generalization of minimax. Similarly, local Stackelberg equilibrium can be
defined as an extension of local minimax [7]. Applications of finding Stackelberg equilibrium include
hyperparameter optimization [13]. For non-zero-sum games, we can show that a simple variant of FR
converges exactly to local Stackelberg equilibria (see Appendix D.2).

2By a rate a, we mean that one iteration shortens the distance toward the fixed point by a factor of (1− a);
hence the larger the better.
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5 Experiments

Our experiments had two main aims: (1) to test if FR is able to converge and only converge to local
minimax, and (2) to test the effectiveness of FR in standard machine learning applications.

5.1 Quadratic Problems

Figure 2: Trajectory of FR and other algorithms in quadratic
problems. Left: for g1, (0, 0) is local minimax. Right: for
g2, (0, 0) is NOT local minimax. The contours are for the
function value. For g2, we plotted the coordinates x1 and y1
and the function value on x2 = y2 = 0.

We compare FR with gradient descent-
ascent (GDA), optimistic mirror descent
(OGDA) [4], extragradient (EG) [12], sym-
plectic gradient adjustment (SGA) [2] and
consensus optimization (CO) [16] on two
simple quadratic problems:
g1(x, y) = −4x

2 − y2 + 5xy

g2(x,y) = x
2
1 + 2x1y1 +

1

2
y
2
1 −

1

2
x
2
2 + 2x2y2 − y22 .

It can be seen in Fig. 2 that when running
in g1, where (0, 0) is a local minimax, only
FR and CO converge to it; all other method
diverges. On the other hand, in g2, where
(0, 0) is not a local minimax, all algorithms
except for FR converges to this undesirable fixed point. This suggests that even on extremely simple
instances, existing algorithms can either fail to converge to a desirable fixed point or converge to bad
fixed points, whereas FR always exhibits desirable behavior.

5.2 Generative Adversarial Networks
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Figure 3: Top: GDA; Bottom: FR.

We further compared FR with GDA on GAN training to illustrate the importance the Ridge gradient
term. Particularly, we focused on mixtures of Gaussian problem and used the original saturating loss.
To satisfy the non-singular Hessian assumption, we addL2 regularization (0.0002) to the discriminator.
For both generator and discriminator, we used 3-layers MLP with 64 hidden units each layer where
tanh activations was used. By default, RMSprop [22] was used in all our experiments while the
learning rate was tuned for GDA. As our FR involves the computation of Hessian inverse which is
computational prohibitive, we instead used conjugate gradient [15, 17] to solve the linear system.
To be specific, instead of solving Hyyz = Hyx∇xf directly, we solved H2

yyz = HyyHyx∇xf to
ensure that the problem is well-posed since H2

yy is always positive semidefinite. For all experimental
details, we refer readers to Appendix E.2.

As shown in Fig. 3, GDA suffers from the “missing mode” problem and both discriminator and
generator fail to converge as confirmed by the gradient norm plot. In contrast, the generator trained
with FR successfully learns the true distribution with three modes while the discriminator is totally
fooled by the generator. Interestingly, both two players reach much lower gradient norm with FR,
indicating convergence.
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A Basic Properties of Local Minimax

First, we would like to mention some basic properties of local minimax for completeness. Most of
the results are established in [11].
Proposition 1 (Necessary condition). Any local minimax (x,y) satisfies ∇xf(x,y) = 0,
∇yf(x,y) = 0, ∇2

yyf(x,y) 4 0 and
[
∇2

xxf −∇2
xyf∇2

yyf
−1∇2

yxf
]

(x,y) < 0.

Proposition 2 (Sufficient condition). If (x,y) satisfies ∇xf(x,y) = 0, ∇yf(x,y) = 0,
∇2

yyf(x,y) ≺ 0 and
[
∇2

xxf −∇2
xyf∇2

yyf
−1∇2

yxf
]

(x,y) � 0, then (x,y) is a local minimax.

B Proof of Theorem 1

Proof. First of all, note that FR’s update rule can be rewritten as[
xt+1

yt+1

]
←
[
xt
yt

]
− ηx

[
I

−H−1
yyHyx cI

] [
∇xf
−∇yf

]
, (3)

where c := ηy/ηx, and that
[

I
−H−1

yyHyx cI

]
is always invertible. Therefore, the fixed points of FR

is exactly those that satisfy∇f(x,y) = 0, i.e., the first-order necessary condition of local minimax.

Now, consider a fixed point (x∗,y∗). The Jacobian of FR’s update rule at (x∗,y∗) is given by

J = I− ηx
[

I
−H−1

yyHyx I

] [
Hxx Hxy

cHyx cHyy

]
.

Observe that J is similar to[
I

H−1
yyHyx I

]
J

[
I

−H−1
yyHyx I

]
=I− ηx

[
I

H−1
yyHyx I

] [
I

−H−1
yyHyx I

] [
Hxx Hxy

cHyx cHyy

] [
I

−H−1
yyHyx I

]
=I− ηx

[
Hxx −HxyH

−1
yyHyx Hxy

−cHyy

]
,

which is block diagonal. Therefore, the eigenvalues of J are exactly those of I + ηyHyy and those
of I− ηx(Hxx −HxyH

−1
yyHyx), which are all real because both matrices are symmetric.

Moreover, suppose that

ηx <
2

max
{
ρ(Hxx −HxyH

−1
yyHyx), cρ(−Hyy)

} ,
where ρ(·) stands for spectral radius. In this case

−I ≺ I + ηyHyy, −I ≺ I− ηx(Hxx −HxyH
−1
yyHyx).

Therefore whether ρ(J) < 1 depends on whether−Hyy or Hxx−HxyH
−1
yyHyx has negative eigen-

values. If (x∗,y∗) is a local minimax, by the necessary condition, Hyy 4 0, Hxx−HxyH
−1
yyHyx <

0. It follows that the eigenvalues of J all fall in (−1, 1]. (x∗,y∗) is thus a stable limit point of FR.

On the other hand, when (x∗,y∗) is a strictly stable limit point, ρ(J) < 1. It follows that both Hyy

and Hxx −HxyH
−1
yyHyx must be positive definite. By the sufficient conditions of local minimax,

(x∗,y∗) is a local minimax.

C Proof of Theorem 2

Consider a general discrete dynamical system zt+1 ← g(zt). Let z∗ be a fixed point of g(·). Let
J(z) denote the Jacobian of g(·) at z. Similar results can be found in many texts; see, for instance,
Theorem 2.12 [18].

7



Proposition 3 (Local convergence from Jacobian eigenvalue). If ρ(J(z∗)) = 1−∆ < 1, then there
exists a neighborhood U of z∗ such that for any z0 ∈ U ,

‖zt − z∗‖2 ≤ C
(

1− ∆

2

)t
‖z0 − z∗‖2,

where C is some constant.

Proof. By Lemma 5.6.10 [10], since ρ(J(z∗)) = 1−∆, there exists a matrix norm ‖ · ‖ induced by
vector norm ‖ · ‖ such that ‖J(z∗)‖ < 1 − 3∆

4 . Now consider the Taylor expansion of g(z) at the
fixed point z∗:

g(z) = g(z∗) + J(z∗)(z− z∗) +R(z− z∗),

where the remainder term satisfies

lim
z→z∗

R(z− z∗)

‖z− z∗‖
= 0.

Therefore, we can choose 0 < δ such that whenever ‖z− z∗‖ < δ, ‖R(z− z∗)‖ ≤ ∆
4 ‖z− z∗‖. In

this case,
‖g(z)− g(z∗)‖ ≤ ‖J(z∗)(z− z∗)‖+ ‖R(z− z∗)‖

≤ ‖J(z∗)‖‖z− z∗‖+
∆

4
‖z− z∗‖

≤
(

1− ∆

2

)
‖z− z∗‖.

In other words, when z0 ∈ U = {z| ‖z− z∗‖ < δ},

‖zt − z∗‖ ≤
(

1− ∆

2

)t
‖z0 − z∗‖.

By the equivalence of finite dimensional norms, there exists constants c1, c2 > 0 such that

∀z, c1‖z‖2 ≤ ‖z‖ ≤ c2‖z‖2.

Therefore

‖zt − z∗‖2 ≤
c2
c1

(
1− ∆

2

)t
‖z0 − z∗‖2.

In other words, the rate of convergence is given by the gap between ρ(J) and 1. We now prove
Theorem 2 using this view.

proof of Theorem 2. In the following proof we use ‖ · ‖ to denote the standard spectral norm. It is
not hard to see that λmax(−Hyy) ≤ ρ(∇2f(x∗,y∗)) = β and ‖Hxy‖ ≤ β. Also,

λmax(Hxx −HxyH
−1
yyHyx) ≤ ‖Hxx‖+ ‖Hxy‖2 · ‖H−1

yy‖ ≤ β +
β2

α
= (1 + κ)β.

Therefore we choose our learning rate to be ηx = ηy = 1
2κβ . In this case, the eigenvalues of the

Jacobian of FR without momentum all fall in
[
0, 1− 1

2κ2

]
. Using Proposition 3, we can show that

FR locally converges with a rate of Ω(κ−2).

Now, let us focus on FR with Polyak’s momentum:[
xt+1

yt+1

]
←
[
xt
yt

]
− ηx

[
I

−H−1
yyHyx I

] [
∇xf
−∇yf

]
+ γ

[
xt − xt−1

yt − yt−1

]
. (4)

This is a dynamical system on the augmented space of (xt,yt,xt−1,yt−1). Let

J1 := I− ηx
[

I
−H−1

yyHyx I

] [
Hxx Hxy

−Hyx −Hyy

]
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be the Jacobian of the original FR at a fixed point (x∗,y∗). Then the Jacobian of Polyak’s momentum
at (x∗,y∗,x∗,y∗) is

J2 :=

[
γI + J1 −γI

I 0

]
.

The spectrum of J2 is given by solutions to

det (λI− J2) = det
(
(λ2 − γλ+ γ)I− γJ1

)
= 0.

In other words, an eigenvalue r of J1 corresponds to two eigenvalues of J2 given by the roots of
λ2− (γ+r)λ+γ = 0. For our case, let us choose γ = 1+ 1

2κ2 −
√

2
κ . Then for any r ∈

[
0, 1− 1

2κ2

]
,

(r + γ)2 − 4γ ≤
(

1− 1

2κ2
+ γ

)2

− 4γ = 0.

Therefore the two roots of λ2− (γ+ r)λ+ γ = 0 must be imaginary, and their magnitude are exactly√
γ. Since

√
γ ≤ 1− 1−γ

2 ≤ 1− 1
2
√

2κ
, we now know that ρ(J2) ≤ 1− 1

2
√

2κ
. Using Proposition 3,

we can see that FR with momentum locally converge with a rate of Ω(κ−1).

D Proofs for Section 4

D.1 Preconditioning

Recall that the preconditioned variant of FR is given by[
xt+1

yt+1

]
←
[
xt
yt

]
−
[

I
−H−1

yyHyx I

] [
ηxP1∇xf
−ηyP2∇yf

]
. (5)

We now prove that preconditioning does not effect the local convergence properties.
Proposition 4. If A is a symmetric real matrix, B is symmetric and positive definite, then the
eigenvalues of AB are all real, and AB and A have the same number of positive, negative and zero
eigenvalues.

Proof. AB is similar to and thus has the same eigenvalues as B
1
2AB

1
2 , which is symmetric and has

real eigenvalues. Since B
1
2AB

1
2 is congruent to A, they have the same number of positive, negative

and zero eigenvalues (see Theorem 4.5.8 [10]).

Proposition 5. Assume that P1 and P2 are positive definite. The Jacobian of (5) has only real
eigenvalues at fixed points. With a suitable learning rate, all strictly stable fixed points of (5) are
local minimax, and all local minimax are stable fixed points of (5).

Proof. First, observe that both
[

I
−H−1

yyHyx I

]
and

[
P1

P2

]
are both always invertible. Hence

fixed points of (5) are exactly stationary points. Let c := ηy/ηx. Note that the Jacobian of (5) is
given by

J = I− ηx
[

I
−H−1

yyHyx I

] [
P1

P2

] [
Hxx Hxy

cHyx cHyy

]
,

which is similar to [
I

H−1
yyHyx I

]
J

[
I

−H−1
yyHyx I

]
=I− ηx

[
P1

P2

] [
Hxx −HxyH

−1
yyHyx Hxy

−cHyy

]
.

Therefore the eigenvalues of J are exactly those of I − ηxP1

(
Hxx −HxyH

−1
yyHyx

)
and I +

ηyP2Hyy. By Proposition 4, the eigenvalues of both matrices are all real. When the learning rates
are small enough, i.e., when

ηx <
2

max
{
ρ
(
P1(Hxx −HxyH

−1
yyHyx)

)
, cρ(−P2Hyy)

} ,
9



whether ρ(J) ≤ 1 solely depends on whether P1

(
Hxx −HxyH

−1
yyHyx

)
and −P2Hyy have

negative eigenvalues. By Proposition 4, the number of positive, negative and zero eigenvalues of the
two matrices are the same as those of Hxx −HxyH

−1
yyHyx and −Hyy respectively. Therefore the

proposition follows from the same argument as in Theorem 1.

D.2 Non-zero-sum Stackelberg Games

A non-zero-sum Stackelberg games is formulated as follows. There is a leader, whose action is
x ∈ Rn, and a follower, whose action is y ∈ Rm. The leader’s cost function is given by f(x,y)
while the follower’s is given by g(x,y). The generalization of minimax in non-zero-sum Stackelberg
games is Stackelberg equilibrium.

Definition 2 (Stackelberg equilibrium). (x∗,y∗) is a (global) Stackelberg equilibrium if y∗ ∈ R(x∗),
and ∀x ∈ X ,

f(x∗,y∗) ≤ max
y∈R(x)

g(x,y),

where R(x) := arg min g(x, ·) is the best response set for the follower.

Similarly, local minimax is generalized to local Stackelberg equilibrium, defined as follows.

Definition 3. (x∗,y∗) is a local Stackelberg equilibrium if

1. y∗ is a local minimum of g(x∗, ·);

2. Let r(x) be the implicit function defined by∇yg(x,y) = 0 in a neighborhood of x∗ with
r(x∗) = y∗. Then x∗ is a local minimum of φ(x) := f(x, r(x)).

For local Stackelberg equilibrium, we have similar necessary conditions and sufficient conditions.
For simplicity, we use the following notation when it is clear from the context

∇2f(x,y) =

[
Hxx Hxy

Hyx Hyy

]
, ∇2g(x,y) =

[
Gxx Gxy

Gyx Gyy

]
.

Proposition 6 (Necessary conditions). Any local Stackelberg equilibrium satisfies ∇yg(x,y) = 0,
∇xf(x,y)−GxyG

−1
yy∇yf(x,y) = 0,∇2

yyg(x,y) < 0 and

Hxx −HxyG
−1
yyGyx −∇x

(
GxyG

−1
yy∇yf

)
+∇y

(
GxyG

−1
yy∇yf

)
G−1

yyGyx < 0.

Proposition 7 (Sufficient conditions). If (x,y) satisfy ∇yg(x,y) = 0, ∇xf(x,y) −
GxyG

−1
yy∇yf(x,y) = 0,∇2

yyg(x,y) � 0 and

Hxx −HxyG
−1
yyGyx −∇x

(
GxyG

−1
yy∇yf

)
+∇y

(
GxyG

−1
yy∇yf

)
G−1

yyGyx � 0.

then (x,y) is a local Stackelberg equilibrium.

Henceforth we will useDxf(x,y) to denote∇xf−GxyG
−1
yy∇yf(x,y). The non-zero-sum version

of Follow-the-Ridge is given by[
xt+1

yt+1

]
←
[
xt
yt

]
−
[

I
−G−1

yyGyx I

] [
ηxDxf(xt,yt)
ηy∇yg(xt,yt)

]
. (6)

Just as the zero-sum version of FR converges exactly to local minimax, we can show that the
non-zero-sum version of FR converges exactly to local Stackelberg equilibria.

Theorem 3. The Jacobian of (6) has only real eigenvalues at fixed points. With a suitable learning
rate, all strictly stable fixed points of (6) are local Stackelberg equilibria, and all local Stackelberg
equilibria are stable fixed points of (6).

Proof. Let c := ηy/ηx. Note that
[

I
−G−1

yyGyx I

]
is always invertible. Therefore, the fixed points

of (6) are exactly those that satisfy Dxf(x,y) = 0 and∇yg(x,y) = 0, i.e. the first-order necessary
condition for local Stackelberg equilibria.
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Now, consider a fixed point (x,y). The Jacobian of (6) at (x,y) is given by

J = I− ηx
[

I
−G−1

yyGyx I

] [
Hxx −∇x(GxyG

−1
yy∇yf) Hxy −∇y(GxyG

−1
yy∇yf)

cGyx cGyy

]
.

Observe that[
I

G−1
yyGyx I

]
J

[
I

−G−1
yyGyx I

]
=I− ηx

[
Hxx −∇x(GxyG

−1
yy∇yf) Hxy −∇y(GxyG

−1
yy∇yf)

cGyx cGyy

] [
I

−G−1
yyGyx I

]
=I− ηx

[
Hxx −HxyG

−1
yyGyx −∇x (�) +∇y (�)G−1

yyGyx Hxy −∇y(�)
0 cGyy

]
,

where � is a shorthand for GxyG
−1
yy∇yf . Let

H̃xx := Hxx −HxyG
−1
yyGyx −∇x (�) +∇y (�)G−1

yyGyx.

We can now see that the eigenvalues of J are exactly those of I− ηxH̃xx and those of I− ηyGyy. It
follows that all eigenvalues of J are real.3 Suppose that

ηx <
2

max{ρ(H̃xx), cρ (Gyy)}
.

In that case, if (x,y) is a local Stackelberg equilibrium, then from the second-order necessary
condition, both H̃xx and Gyy are positive semidefinite. As a result, all eigenvalues of J would be in
(−1, 1]. This suggests that (x,y) is a stable fixed point.

On the other hand, if (x,y) is a strictly stable fixed point, then all eigenvalues of J fall in (−1, 1),
which suggests that H̃xx � 0 and Gyy � 0. By the sufficient condition, (x,y) is a local Stackelberg
equilibrium.

E Experimental Details

E.1 Quadratic Problems

The algorithms we compared with are[
xt+1

yt+1

]
←
[
xt
yt

]
− η

[
∇xf(xt,yt)
−∇yf(xt,yt)

]
, (GDA)[

xt+1

yt+1

]
←
[
xt
yt

]
− 2η

[
∇xf(xt,yt)
−∇yf(xt,yt)

]
+ η

[
∇xf(xt−1,yt−1)
−∇yf(xt−1,yt−1)

]
, (OGDA)[

xt+1

yt+1

]
←
[
xt
yt

]
− η

[
∇xf(xt − η∇xf(xt,yt),yt + η∇yf(xt,yt))
−∇yf(xt − η∇xf(xt,yt),yt + η∇yf(xt,yt))

]
, (EG)[

xt+1

yt+1

]
←
[
xt
yt

]
− η

[
I −λHxy

λHyx I

] [
∇xf(xt,yt)
−∇yf(xt,yt)

]
, (SGA)[

xt+1

yt+1

]
←
[
xt
yt

]
− η

[
∇xf(xt,yt)
−∇yf(xt,yt)

]
− γη∇‖∇f(xt,yt)‖2 . (CO)

We used a learning rate of η = 0.01 for all algorithms, λ = 0.1 for SGA and γ = 0.1 for CO.

E.2 GAN Model with Mixture of Gaussian

Dataset. The Mixture of Gaussian dataset is composed of 5,000 points sampled independently from
the following distribution pD(x) = 1

3N (−4, 0.01) + 1
3N (0, 0.01) + 1

3N (4, 0.01) where N (µ, σ2)

is the probability density function of a 1D-Gaussian distribution with mean µ and variance σ2. The

3H̃xx is always symmetric.
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latent variables z ∈ R4 are sampled from a standard Normal distribution N (0, I). Because we want
to use full-batch methods, we sample 5,000 points that we re-use for each iteration during training.

Neural Networks Architecture. Both the generator and discriminator are 2 hidden layer neural
networks with 64 hidden units and Tanh activations.

Other Hyperparameters. For FR, we used conjugate gradient in the inner-loop to approximately
invert the Hessian. In practice, we used 5 (10 and 20 also works well) CG iterations. Since the loss
surface is highly non-convex (let alone quadratic), we added damping term to stabilize the training.
Specifically, we followed Levenberg-Marquardt style heuristic adopted in [15]. For both generator
and discriminator, we used learning rate 0.0002.
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