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Abstract

Recent advances in adversarial learning observe that stabilization with gradient
penalties trades off generated sample quality. We try to address this limitation by
proposing novel objectives inspired by the logical XOR operation, which should
not depend on gradient penalty regularization in order to be locally stable. In the
sections that follow, we will present a theoretical study on this type of objective
functions. We will prove global optimality conditions with similar assumptions
as those made in the original GAN paper by Goodfellow et al., we will notice
connections between the XOR-type objectives and the original GAN, and we will
define non zero-sum parametric objectives based on that connection. Finally, we
will attempt to study the local stability of the continuous-time training dynamical
system around desirable equilibria.

1 Introduction

Generative Adversarial Networks (GAN) [1] offer a training methodology which has produced state-
of-the-art generative models in terms of sample quality, enabling solutions that scale to vast datasets
[2] as well as to large resolution images [3]. Though successful, stabilizing the training procedure
still requires considerable effort from a practitioner’s point of view, and as a consequence, their
training dynamics have attracted the research interest of the communities of optimization and game
theory. Two complementary research directions are considered in this endeavour. The first tries to
solve the stabilization problem by proposing, alternative to stochastic gradient descent, algorithms
which are more suitable for saddle-point optimization [4, 5]. The second one tries instead to propose
or modify the training objectives to be optimized, which in turn hopefully leads to better behaved
training procedures [6, 7, 8]. This work proceeds in the second direction by proposing and studying
novel adversarial objectives, that solve the same generative problem, utilizing the GAN framework,
while trying to establish stable training and to avoid limitations introduced by existing methods.

A common limitation among existing methods is the usage of objectives which correspond to a
zero-sum game between the generator and the critic network [9]. This is a known issue regarding
the zero-sum game setting: An algorithm or regularized dynamics trying to reach a Nash equilibrium
will eventually lead to ’limit” cycles around desired equilibria. Modifications to the original objec-
tives which depart from a zero-sum game, like the gradient penalty [10, 6, 7] or the non-saturating
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standard GAN objectives [1, 11], offer in certain cases stable training procedures in the cost of ap-
proximating solutions of a slightly different problem. The gradient penalty, in particular, tries to
regularize the Lipschitz constant of the critic function and it is considered as standard technology
for the robust training of GANs.

1.1 Discussion on constraining critic function’s Lipschitz constant

While originally devised [10] in order to satisfy the function class constraint of the Kantorovich
metric between probability measures, which was introduced to the GAN framework by Arjovsky
et al. (WGAN) [12], variations of the gradient penalty were soon proposed to stabilize adversarial
training [6, 7]. These methods regularize the GAN or WGAN objectives so that certain theoretical
properties about local convergence can be shown and they have been deployed in practice success-
fully. However, there have been experiments which suggest that utilizing a gradient penalty does
not yield state-of-the-art performance, even though the training procedure is effectively stabilized
[2]. Similar concerns have been attempted to be put forward by theoretical arguments [13]. Look-
ing closely at proposition 1.1, we postulate that this behaviour is due to the final critic having zero
gradient with respect to its input everywhere on the support of the real distribution. Mescheder et
al. [7] made a seemingly necessary assumption for studying the equilibria of GAN and WGAN
training; that the critic will have a constant value in a local neighbourhood of the real distribution’s
support at equilibrium. Thus, the final critic is locally constant in all directions on every point in the
real distribution’s support. So by combining this, with the hypothesis that the real distribution lies
on a lower dimensional manifold [11], we hypothesize in particular that this condition predicts the
limitation of the critic’s capacity to locally discriminate between real and fake samples, which are
nearby, but not on, the support of the real distribution.

Proposition 1.1 (Stationary points of GAN and WGAN (Mescheder et al. [7]))

Let Cy be a parametric model of the critic function and Gy be the parametric model of the generator

function. Also, Qg := Gg#Z the induced measure in sample space by pushing random variable Z
through model Gy. P is the target probability measure. Points (1*, 6*) of the joint parameter space
consist equilibria of a system optimizing with GAN (la) or WGAN (1b) parametric objectives.

(GAN) Qp- =P and Cy-(x)=0 and V,Cy-(x)=0 V€ supp{P} (la)
(WGAN) Qp- =P and V,Cy-(z)=0 Vz € supp{P} (1b)

A parallel successful attempt to satisfy a Lipschitz constraint in the critic’s class is spectral nor-
malization [8]. It modifies critic’s architecture in such as a way so that its Lipschitz constant is
approximately equal to 1. This has been deployed successfully in practice [2] for the original GAN
objectives, leading to superior sample quality and easier optimization, however it does not seem
to suffice for guaranteeing training’s stability. This could be because such normalization does not
guarantee that the final condition for the critic’s gradients (proposition 1.1) will be met in the case of
GAN’s or WGAN’s desired training equilibria. So, we believe that this method acts complimentary
to those guaranteeing local stability around training’s equilibria.

2 Methodology

We motivate our search for alternative adversarial objective functions in methods which utilize more
than one sample as inputs to the discriminator function. Some of them [14, 15, 16, 17, 18, 19, 13]
derive the expressions for the objectives from the Maximum Mean Discrepancy [20] metric between
probability measures, while others motivate their objective functions in an attempt to mitigate the
mode dropping problem [17, 21, 22]. A recent method in this line of thought [23] suggests exper-
imentally that defining objectives which act on the relative discrimination between real and fake
samples may have actual benefits on the stability of a GAN’s training.

In this work we will use a differentiable anagolue of the XOR logical operation, in order to define
relative discrimination objective functions for adversarial generation. In particular, we think of a
discriminator function D: R? x R? — [0, 1] which accepts two sample inputs and tries to discrim-
inate whether these two samples have been drawn from the same or from a different distribution.
We are going to have D learn an XOR-type relation between samples from the two distribution. In



this sense, D is trained to assign the “true” value when two samples are drawn from different dis-
tributions, and the “’false” value when they are drawn from the same. Consequently, the adversarial
game, we will initially consider, is formulated as such:
i E log(1-D E log (D E log(1—-D E log (D
minmax B log (z,))+ E log (D (z,9))+ E log ( (2,))+ E log (D(z,y))
y~P y~Q y~Q y~P

2

3 Theoretical Results

3.1 Global Optimality Analysis

For solving analytically the game described in eq. (2), we will make the following assumptions:
First, analysis concerns the realizable case. Second, measures P and QQ are absolutely continuous
between themselves. Third, they both admit probability density functions, p and g respectively,
under a common measure of reference, v.

Lemma 3.1 (Optimal discriminator of (2))

D* (z,y) = oz Z)(i’ Z)(z m Va,y € supp{v x v} (3a)
a(x,y) = % (p(x)q(y)+q(x)p(y) (3b)
b(z,y) = % (p(x)p ) +q(x)q(y)) (3c)

Outside supp{v x v}, D* can take any real value.

Proof: Upon expanding the expectations in (2) and after algebraic manipulations, we get:

D* = arglrjnax 2// {1og (D (z, y)) a(x,y)+log (1 -D (m,y)) b (m,y)} dv (z) dv (y) 4)

Expressions (3b) and (3c) have an integral equal to 1 and consequently a and b can be considered as
”mixture” densities of probability measures A and B on supp{r} x supp{r}, absolutely continuous
with respect to v x v. Likewise to the analysis in Goodfellow et al. [1], the integral takes maximum
value iff each integrated term is maximal for each (z,y) € supp{v x v}. So:

D* (z,y) = argmax {log (d)a (z,y) +log (1 —d)b(z,y)}  V(x,y) €supp{v xv}  (5)
d
The function of d to be maximized has unique extremal at ¢ and is strictly concave in (0,1). O

Proposition 3.2 (Optimal generator of (2))

Q" =P (6)

Proof:  Substituting (3) in (2), we get the following equivalent optimization problem for Q:

Q" = argmin {49D (4(Q),B(Q) — 4102} = A(Q) =B(Q") (7a)
p(x)q"(y) + 4" (@)p(y) = p(x)p(y) + ¢" (2)q" (y) (7b)
(p(x) =" (2)) (p(y) —a*(y)) =0 <= ¢" =p <= Q" =P (7¢)

O

3.2 XORGAN Parametric Objectives

We notice that we can factor the expression of optimal discriminator in lemma 3.1 with terms of the
original GAN’s optimal discriminator expression [1], Dy (), as such:

p(@)a(y) +a@py) v pr D
1 4@) () +a) D@ (- D) + (1= DiE)DIG) @

Dior(z,y) = (p(



This motivates us to define the XORGAN’s objectives using a critic function of a single sample
input. Furthermore, this allows us to state the following equivalent non zero-sum game between the
critic and the generator function:

Definition 3.3 (Parametric XORGAN objective functions)

arginax Loan (1,0) = E log (0 (Cy (ac))) + EEEQQ log (0’ (—Cy (x))) )

argomin Lxor (¥,0) =8 (IP,IP’, qu) +S8 (@m Qo) Cw) +2D (IP’, Qy, Cw) (10)

D(,Q.0) = E log (0 (C ()0 (~C (1) +0 (~C (@) o (Cw)) an
y~Q

S(P,Q,0) = E log (a (C@)o(Cy)+o(-C)o(-C (y))) (12)
y~Q

The expressions above can be derived by modelling D1 (x;1) by o (Cy, ()) as in [1] and substitut-
ing appropriately into a model for Dxor(«, y; 1), and then in eq. (2).

3.3 Stability Analysis in Continuous-Time Training Dynamics

We now present the training of a XORGAN as a continuous-time dynamical system, as in [24, 7],
by considering gradient descent/ascent as its optimization algorithm:

¢ Vi Laan (¥, 0)
= . = 1
v (¥.6) (9 —Vo Lxor (¢, 0) (13)
Then, the following statements can be proven regarding its stability analysis:

Proposition 3.4 (Stationary points of XORGAN)

Points (1*,0*) of the joint parameter space consist equilibria of the system which occurs from the
optimization of XORGAN parametric objectives, as described in definition 3.3.

(XORGAN) Qp- =P and Cy-(z) =0 Vz € supp{P} (14)

Also, the system’s Jacobian at these points is negative semi-definite and it has real eigenvalues only.

Proof of proposition 3.4 can be found in supplementary material.

4 Conclusions and Future Work

We hope that these primary findings can serve as motiva-

tion for further investigation towards this direction. First

of all, however, we are still seeking to finalize an argu-

ment towards asymptotic stability to a forward invariant + il
set of the training dynamics, using Lyapunov arguments.
That would reassure us about XORGAN’s local stability
properties compared to existing analyses of other objec-
tives. Nevertheless, the finding of desirable and provable
equilibria with negative semi-definite Jacobian indicates
that we are searching in a good direction. This view can
be reinforced by the simulation experiments on toy prob-
lems, presented in fig. 1 and in supplementary material.
Second, in future work, we seek to compare experimen- . ) ) )
tally in image generation tasks against benchmark adver- Figure 1: Simulation with

sarial objectives, like GAN [1] or WGAN [12], as well Cy (z) = Yoz + 91 and Qp = g

as with more recent approaches like the RGAN [23]. Fi-

nally, we hope that current work will motivate simple experiments which would investigate the
limitations of gradient penalty regularization in adversarial learning, if any.
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S Supplementary Material

5.1 Remarks on XORGAN Optimal Discriminator
5.1.1 Inrelation to the original GAN objectives

Let us look into eq. (3) of the optimal discriminator. We could try to represent this with a model of
two samples inputs. However, this would be more computationally inefficient than representing it
with a model of one sample input.

Remark 5.1 optimal GAN discriminator appears in optimal XORGAN discriminator:  Substitute
expressions for A (3b) and B (3c) and after algebraic manipulations we get:

p(z)q(y) + q(x)p(y)

Daor(#:4) = (p(2) + a(=)) (p(y) + a(y)) (50
_ p) q(y) q(x) p(y)
@) +a@) (o) +a(y) | p() + a(@) ply) + a) (15
. pl) )  p(=) p(y) c
s ) ) e 0%
= Déan(®) (1 = Dgan(®)) + (1 = Dgan(2)) Dsan(v) (154d)
This way we can isolate the same term multiple times within the same expression, Dy = ﬁ,

hence simplifying the representation into an operation between functions of a single sample input.

We could have isolated the term ﬁ instead. This would mean that an original GAN targetted 1
for the fake data and O for the real. However, such a choice does not affect the final expression for

XORGAN’s optimal discriminator as it is symmetric with respect to p and q.

Furthermore, it was possible to derive our relativistic objectives in the same way for the NXOR
logical operation. The optimal discriminator, we would find in that case, would be:

p(x)p(y) + q(x)q(y)
) + q(x)) (p(y) + q(y))

where again we could have isolated the same terms of a single sample input without affecting the
final expression due to symmetry. It is true, however, that, independently from such choices, the
objective functional expression remains invariant for every adversarial objectives studied (GAN,
WGAN, XORGAN, and others). In any case, the final objective expression is irrelevant to the
choice of predetermined targets for the discriminator. In particular, this seems to be the case for
XORGAN as well because the following relation holds:

Dxor(,y) + Dixor(z,y) =1 17

Dixor (7, ) = (p( (16)

5.1.2 Inrelation to the logical events: same vs different distribution

We chose to represent bijectively the interval [0, 1], which is the image of probability measures, by
using the sigmoid function. By substituting the optimal discriminator for the GAN objectives with

the composite function o o C*, where as C': R? — R we define the critic model:

Dior(@,y) = o(C*(@)) (1= o(C* 1)) + (1 = o(C* (@) ) (C* () (18)
= U(C’*(;v))a( - C* (y)) + 0( — C*(m))a(C*(y))

Similarly, for the NXOR alternative, we can show that:

Dixor(#,y) = 0 (C*(2))a (C*(y)) + o(— C*(z))o(— C*(y)) (19)

We will attempt to give semantics to the derived discriminator expressions. We warn the reader,
however, that the following attempt is rushed and immature, more intuitive than well-defined math-
ematically. More mature and general connection of objective functions to probabilistic semantics
can be found in the work of Xu et al. [25]. We find however the following perspective to be useful
to our intuition, so we are going to develop it in the current text.



We like to think that the expression for D}, (x, y) (18) corresponds to the logical proposition:
Dzy & (Pz A Qy) V (Qz A Py) (20)

Proposition D (20) is evaluated as true if and only if its inputs are samples of different distributions.
Similarly, the expression for Dy (z,y) (19) corresponds to the logical proposition:

Sxy & (Px APy) V (Qz A Qy) 21

Proposition S (21) is evaluated as true if and only if its inputs are samples from the same distribution.
We further see that the disjunction of these two proposition is a tautology (22), which is aligned with
the observation made in eq. (17). Due to symmetry, we would derive the same remarks even if we
considered o (C*(x)) to represent 4.

F (Day V Szy) < (Pz AQy) vV (Qz APy) V (PzAPy) V (Qz A Qy) (22)

Having remarked these intuitive relations, we define two objective functionals with respect to two
probability measure inputs and a critic function, which the discriminator is consisted of, C. We
name them by the first letters of the english words “Different” and ”Same”, reminding their intuitive
utility:

D(B.Q.0) = E log (7 (C () o (~C (1) +0(~C (@) o (Cw))) 23)
y~Q

§(.0.0) = E log (¢(C(2) 0 (C(w)) +0(~C (@) o (-C))) 4
y~Q

The initial problem (2) is written as such, when expressed by the functionals (23) and (24):

argminargmax S (P,P,C)+ D ((P,Q,C)+D(Q,P,C)+S(Q,Q,C) (25)
Q c

By observing that the functional D (23) is symmetric with respect to its probability measure inputs,
we can simplify the last expression:

argminargmax S (P,P,C)+S(Q,Q,C)+2D (P,Q,C) (26)
0 c

5.2 Proofs about Stability of Non Zero-sum XORGAN Training

As it is described in definition 3.3, we chose to have the original GAN objective for training the
discriminator in the non zero-sum game formulation. We remind that this choice does not alter the
solutions of the initial problem, due to the symmetry of the optimal XOR discriminator as we have
seen in section 5.1.1. We are restating the non zero-sum objectives (definition 3.3) that we are going
to study, as well as the definitions for the functionals D (23) and S (24).

Definition 5.2 (Non zero-sum XORGAN objective functions)

arginax Loan (¥,0) = xIEplog (0’ (Cy (x))) + ml%e log (O’ (—=Cy (:c))) (27a)

argemin Lxor (¥, 0) =8 (P,P,Cy) + S (Qy,Qp, Cy) +2D (P,Qp, Cy) (27b)

Training with gradient descent/ascent, stated as a continuous-time dynamical system, becomes:

v (1{0}> ( v e (%9)) (28)

—Vo Lxor (¢,0)

Eewr [0 (=Cy () ViCy (2)] — Eang, [0 (Cy (1) Ty (2)
~Vo, S (Qelan Cw) |91:9 -V, S (Q97Q92,Cw) |92:9 —2VyD (IE”, Qy, Cy




Proposition 5.3 (Non zero-sum XORGAN equilibria)

Points (¢*,0*) of the joint parameter space consist stationary points of the system which occurs
from the optimization of non zero-sum XORGAN parametric objectives, as described in eq. (28).

Qp- =P and Cy-(z) =0 Vz € supp{P} (29)

Proof: 'We can easily verify that points (29) are indeed stationary points, as the time-derivative of
the states equals to zero:

Vy Loan (¥, 0) b=y = (30)
- E [a (=Cye () VOl (2) ‘w—w*] - E {0 (Cye (2)) ViuCyp () lw—w*}
- E [(a (0) — 5 (0)) Vi Cy () ‘¢=w*} =0

For finding the derivative with respect to #, let us remember that the functionals S (24) and D (23)
are symmetric with respect to their measure inputs, as also that Dyxor = 1 — Dxor, Which is
apparent from the following definitions:

Dnxor (2,9,9) =0 (Cw (95)) o (Cw (y)) +o (—Cw (93)) o (—Cw (y)) (31a)
Dxor (2,y,9) = 0 (Cy (2)) 0 (=Cy (y)) + 0 (=Cy () o (Cy (v)) (31b)

Calculating the derivatives of the constituent expressions:

VoS (P, @y, Cy) = Vo { E_log (Dwxor (v:Go (2),v) ) (322)
z~Z
1
=k [DNXOR (z,Go (2),v) VoG (2) VuDicon (2,3, ¥) ’y_Ge(z)l
1

V¢D (]P)a Qea CTZJ) = I]EP
z~Z

Dron (1,Ga (21, ) 0 () VoPron () ’y‘Gs(”] o

Also for Dyxor and Dxor:

Yy Dxxor (4, 8) = o (Cy (1) 7 (~Cy (1) [0 (Cy (2)) = o (~Cp (@) | VCus (9)  (33)
VyDxor (2,y,¥) = —=VyDxor (2,9, ) (33b)

As Vz*,y* € supp{P} Cy- (z*) = 0, according to eq. (29), we find the following values for
eqgs. (31) and (33):

1
Drxor(z”,y",97") = 0 (0)0 (0) + 0 (0) 00 = 5 (34a)
1
DXOR(I*v y*a 11[}*) = 5 (34b)
vyDNXOR (l‘*, Y, ’l/)*) y=y* = VyDNXOR (.’II*, Y, Qﬁ*) y=y* =0 (34’C)

Now to find the values for (32), we make the following observation, beginning from eq. (29):

Qp- =P = supp{Qy-} = supp{P} (35a)
= Gy~ (2) € supp{P} Vz € supp{Z} (35b)
= Cy~ (Gg* (z)) =0 Vzesupp{Z} (35¢)

By using eqs. (29), (34) and (35¢) in (32), we observe that those are zeroed out, and consequently
by substituting into (13), we verify that indeed (¢*, 8*) are stationary points. O



We will examine the behaviour of the system (13) locally around the stationary points (29). For this
reason we will linearize the system by expanding its first order. So we are extracting the Jacobian of
the system, J (¢, 6):

'(/') ~ * gk 'QZ)_'(/}* _
(3) 6 (373) -

Vi Laan(1,0) |y—p= Vg Laan(¥,0) |p—y*
0=0" 6=0* <1/J - J)
0 — 0*
—Viy Lxor(¥,0) [y=yp*  —Vip Lxor(1,0) |y—y-
9—6" 9=6"

Lemma 5.4 (Jacobian at SP (29) of non zero-sum XORGAN)
The Jacobian of the system (28), J, at the stationary points (29) is:

s goy — (Jww Jve

J(¢ ’9 ) - (‘]0'(/1 JQG) (37a)
1 E C C ’

Ty = T anp |:vw (4 () ‘¢:¢* VyCy () Lp—w*} e
1

T =0 (37d)

Jow=—-2Vy E_[C B L€ , ’

60 = T3 V0 L 0, [Cy- ()] ’9:9* Vo z~Qq (G (@) ‘9:9* 70

Proof: We will first find the values for Jy,, and Jy¢ terms of J, which correspond to the second
derivatives of the original GAN critic objective function (27a). We are going to reuse observations
that we used in the proof of proposition 5.3.

qubw ‘CGAN (11[}7 0)

Y=9p" = (38)
0=6"

- E, [—o— (Co- (@) 0 (~Cp- () VoOy (@) V4O () \ZZW +0 (~Cye (2)) V3,Co (@) |
T [—U (Cy- (@) 0 (=Cy (2)) VyCy (2) ‘w:  VyCy (2) ‘w:w* — 0 (=Cy- (2)) V5,4 Cy (w)‘
1 T
=-3 E {Vwcw (z) ’w:w* VyCy (x) ’w—w*}
Vo Loan(¥,0) |p—ys = (39)
0=0"*

z~Z
h=1p* )

zfivg E [(Cw (I)+2)Vw0w(z)|w:w*}

z~Qyp

— 0 (Cy- (2)) V3,Cy (z)

Gy (2) ‘

r=Ggx (2) 0=0~*

6=06~*

Now we will proceed to calculate the values for Jy,, and Jyg. To this end, we will make extensive
use of the property Dnxor + Dxor = 1, which implies that all derivatives of the summation are
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equal to 0: V{Dnxor + Dxor} = V{1} = 0. We also observe that Vz*, y* € supp{P}:

viy‘DNXOR (xay>1/}*) (L:.'L: = (40)
Y=y
T
=20 (Cy- (7)) 0 (=Cy- (z7)) 0 (Cy= (y7)) 0 (=Cy= (y7)) VuCy- (ﬂf)‘ Yy Gy (y) ‘y:y*
1 T
= VeCp@)| V00 )|
=z y=y

So:
V2 Lxor (¥, 0)

,lg:g): = 2v’l2l19 S (Qg* s Qg, C"Z)) ’%:g,: + 2V'L2Z)0 D (P, Q97 Cw) ‘%zg: (418.)

=2¢2 E || VZ,Dxxor (z, 9, %)

x~P

Ph=1p* + v?pyDXOR (.13, Y, w) P=1* nge (Z) ‘9:9*

oy y=Go~ (2) y=Gyx (2)
2 T
=22 E_ [vw VIGy (2) |9:9*} —0
z~Z
T
ng Lxor (¥,0) |y=y+ = Vi Lxor (¥, 0) v,g:z;* =0 (41b)
9=6" =0
Vo Lxor(¥,0) |pey = (41¢)
9—6"

= 2V3192 N (Q91 ’ Q92 ) C’P*)

0,=0" + 2v308 <Q0*7Q07C¢*) ‘0:0* +2V§QD (]P)7 Qeﬂcd’*) ‘0

02=0" =0*
) T
=4 EZ VoG (21) ‘970* ViyDxxor (2,9, ¥7) |1=Gye (21) VoGo (22) ‘979*
2:2 - y=Gox (22) -
4 T T
=5 E_|VoGo (1) ’ VoCyr (@) VoCye (@) VoGl (22) ] ]
7 = 2=Gox(21) 2=Gx (22) =
L E Cy (G E Cy+ (G ’
o 5 zi~Z |:V0 v ( 0 (Zl)) ‘0:0*:| zo~Z |:VQ v ( o (22)) ‘9:9*}
1V E |C Vo E |C ’
~ 279,20, [Cy- (@)] ‘9:0* O oy [Co- ()] ‘9:9*

O

In order to proceed with our analysis at this point, we will state some assumptions. Specifically, we
are going to define the following reparameterization manifolds:

Mp ={¢|Cy (x) =0 V€ supp{P}} 42)

2
Mg = {9| arg min < IEQ Cy (m)) } (43)
0 rrile

We observe that M p (42) simply describes ©* part out of the SP of non zero-sum XORGAN,
according to proposition 5.3. In addition, we assume that for each (i*,6*) there exist e-balls,
B (¢*) and B.(6*), around ¢* and 6* at their respective subspaces, such that Mp N B.(*) and
M N B(0*) define C'-manifolds. Finally, we can express M p equivalently as:

Mp = {¢| argmin - E |C, (a:)|2} (44)
y
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To understand the equivalence, we notice that eq. (44) describes a condition which is minimized if
and only if it is equal to O, as it is non-negative. This condition is equal to 0, when all (non-negative)
square terms in the integral are also equal to 0. The integral is evaluated on supp{P}, thus, for all
points in the support, the square terms, and consequently the critic C,, must be equal to 0.

Lemma 5.5 (Condition for negative definite J.;,)

If vector u # 0 does not lie in the tangent space of M p (44) at ¢*, Ty« M p, then u” Jyyu < 0.

Proof: From lemma 5.4 we have

1 2
u” Jyyu = -5 E <uTv¢c¢, (z) ‘ww*) ] (45)
which implies uTJM,u < 0. We get equality if and only if:
u''V,Cy (x) ‘w_w* =0 Vz € supp{P}. (46)
Let:
2
(W)= E_[Cy@)’] 7)
= Vyh () =2 E [Cy (x) VyCy ()] (48)
— Vi,h($) =2 E [vwcl,, (2) V. Cy (a;)T] +2 E [@ () V2,,Cy (2) (49)
By using the expression of 1)* from proposition 5.3, we observe that:
h(v*)=0 (50
Vyh =0 51
wh)| 5
T
Vih :2E[VC'3: VyCy (z }>0 52
vy (w)‘ww* E w¢()’w=w* ww()(w:w > (52)

so it achieves the minimum of the expression h and thus * € M p. The vector u € Ty« M p if and
only if the second directional derivative at ¢ = ¢* is equal to 0, which is iff eq. (46) holds. O

Lemma 5.6 (Condition for negative definite Jgg)

If vector w # 0 does not lie in the tangent space of Mg (43) at 6*, Tg- Mg, then w” Joew < 0.

2
) (53)
=0+

which implies w” Jpew < 0. We get equality if and only if:

Proof: From lemma 5.4 we have

1
'LUTJQQUJ = —= (wTV9 E [Cw* (x)]
2 ~Qyq

w'Vy E [Cy~ (2)] =0 (54)
2~Qp =0~
Let:
2
90 = (5, v ) 55
= Vg () =2 <x E Cy (x)) Vo E [Cyr (@) (56)

= V2,9 (0) =2V, ) lEQe [Cy (2)] Vo ) lEQG [Cye ()] +2 (x EEQS Cly- (x)) Vo i EQG [Cype (2)]
(57)
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By using proposition 5.3, we observe that:

Vog (6) ‘H* =0 (59)
T
Viss O, =290 B [Co-@]| Vo B [Co@]| 20 €0
0=0~* z~Qq 0=0* Qg 0=0*

so it achieves the minimum of the expression g and thus 8* € M. The vector w € Ty M if and
only if the second directional derivative at § = 6* is equal to 0, which is iff eq. (54) holds. O

We will attempt to draw some conclusion about the eigenvalues of Jacobian J (1)*,6*). For this
purpose we prove the following lemma.

Lemma 5.7 (Eigenvalues of block upper triangular matrix)

-A B
J:(O JJ 61)

where A € R™*"™ D € R™*™. Then, \{J} = AN{—A} U X{-D}.

Let matrix

Proof:  Initially we will show that A{J} = A{—A} UX{—D}. Letu” = (27, y"") be an eigen-
vector of matrix J, with z € R™ and y € R™, and the corresponding eigenvalue A:

_ —Az+By\ _(Ax

Ju = u <~ ( "Dy >_<)\y) (62)
If y # 0, then from —Dy = Ay we understand that y consists an eigenvector of —D with eigenvalue
A. Thus, A € AM{—D}. Otherwise y = 0, and then — Az = Az will hold, from which we understand
that = consists an eigenvector of — A with eigenvalue \. In total, by combining the two possibilities,
it ought to hold that A{J} C \M{—A} UX{—D}.

In inverse, let A be an eigenvalue of —A with corresponding eigenvector z # 0. Then —Az = Az
and we observe that the vector (IT, 0) r is an eigenvector of J, because

/©)-(4)

and with X as its eigenvalue. Thus A\{—A} C A{J}. Finally, we consider X to be an eigenvalue
of —D, which is not also an eigenvalue of —A4, so A € A\{—D} — \M{—A}, and its corresponding
eigenvector y # 0. Then —Dy = Ay, but also the matrix —A — A is not singular, and hence

invertible. Then we observe that the vector (xT, yT)T, with z = (A+ Al )71 By, consists an
eigenvector of .J with eigenvalue .

; (:c> _ (A(A +A\)"'By + By> _ ([—A +(A+AD] (A+ D)7 By) = (;) (64)

Yy —Dy —Dy
Consequently, from all possibilities of the inverse, we have A{—A}U (A{—D} — M{—A}) € A{J}.
By combining the direct and the inverse, we have: \N{J} = A{—A} UA{—D}. O

Corollary 5.7.1 (Eigenvalues of Jacobian at SP (29) of non zero-sum XORGAN)

. . . ) . T
Matrix J, found at lemma 5.4, is negative semi-definite in the parameter space (1/}T, 9T) . How-

ever, in the subspace V (¢*,0*) == span{(uT,wT)T |u ¢ Ty«Mp, w ¢ Tg- Mg}, J is negative
definite. In addition, all of its eigenvalues are real numbers.

Proof: From lemma 5.4, we see that the symmetric matrices Jy,, and Jpy are negative semi-
definite. In consequence, lemma 5.7 implies that .J is negative semi-definite in the joint parameter
space. In subspace V' though, Jy,, and Jyg are negative definite, according to lemmata 5.5 and 5.6.
Thus, J has some eigenvalues with negative real part. Furthermore, all eigenvalues are real numbers
because Jy, and Jyg are symmetric matrices O
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Stability analysis will be continued in future work with purpose to draw guarantees of asymptotic
convergence for the dynamical system at the set of parameters M p x Mg, as those were defined
at egs. (46) and (54). Such analysis will be done by adapting properly the methodology utilized by
[24,7]. Specifically, we will first reparameterize the linearized system with respect to the tangent and
the co-tangent subspaces, and second we will use Lyapunov argument, as well as perhaps Lasalle’s
invariance principle, in order to prove some local stability properties at the set M p x Mg.

5.3 Simulation on Toy Problems

We are performing simulation on toy problem settings as proof of concept. We are generating two
training sets on which we are going to train our models. The first one is composed by samples
from a mixture of 8 2D gaussian distributions, whose means form a regular octagon, while the
second one by samples from a mixture of 25 2D gaussians, whose means form a grid. Our generator
and critic models are feed-forward networks, and spectral normalization [8] is used at the critic
model. Training is performed by optimizing one gradient step at a time, alternatively, for each of
XORGAN'’s objectives. Adam [26] is the optimization algorithm used in these simulations, with
betal = 0.5, beta2 = 0.9, and a fixed learning rate of 7 = le—4. Finally, we keep an exponential
moving average of our generator model’s weights with 8 = 0.999. We use the averaged weights for
the generator model in our visualizations.

Bl il e

(a) Step 1000 (b) Step 20000 (c) Step 40000 (d) Step 60000

Figure 2: Training evolution of XORGAN on 8 gaussians synthetic dataset

| s
‘

(a) Step 1000 (b) Step 20000 (c) Step 40000 (d) Step 60000

Figure 3: Training evolution of XORGAN on 25 gaussians synthetic dataset
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