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Abstract

Motivated by real-world deployment of drones for conservation, this paper ad-
vances the state-of-the-art in security games with signaling. The well-known
defender-attacker security games framework can help in planning for such strategic
deployments of sensors and human patrollers, and warning signals to ward off
adversaries. However, we show that defenders can suffer significant losses when
ignoring real-world uncertainties, such as detection uncertainty resulting from
imperfect deep learning models, despite carefully planned security game strategies
with signaling. In fact, defenders may perform worse than forgoing drones com-
pletely in this case. We address this shortcoming by proposing a novel game model
that integrates signaling and sensor uncertainty; perhaps surprisingly, we show that
defenders can still perform well via a signaling strategy that exploits the uncertain
real-time information primarily from deep learning models. We provide a novel
algorithm, scale-up techniques, and experimental results from simulation based on
our ongoing deployment of a conservation drone system in South Africa.

1 Introduction

Conservation drones are currently deployed in South Africa to prevent wildlife poaching in national
parks (Fig. 1). The drones, equipped with thermal infrared cameras, fly throughout the park at night
when poaching typically occurs. Should anything suspicious be observed in the videos, nearby park
rangers can prevent poaching, and a warning signal (e.g., drone lights) can be deployed for deterrence.
This requires a great deal of planning and coordination, as well as constant video monitoring. Rather
than constant monitoring, an automatic detection system based upon deep learning has recently
been deployed to locate humans and animals in these videos (Anonymous). Although helpful, its
detections are uncertain. Potential false negative detections, in which the system fails to detect actual
poachers, may lead to missed opportunities to deter or prevent poaching. This work is motivated by
this ongoing, real-world deployment of drones for conservation.

Security challenges similar to those in conservation must be addressed around the world, from
protecting large public gatherings such as marathons (Yin, An, and Jain (2014)) to protecting cities.
Security game models have been shown to be effective in many of these real-world domains, e.g.,
Tambe (2011); Bucarey et al. (2017). Recently, these models have begun to take into account real-time
information, for example by using information from footprints when tracking poachers, or images

Abstract for: Smooth Games Optimization and Machine Learning Workshop (NeurIPS 2019), Vancouver,
Canada.



Figure 1: A drone and drone team member who are currently searching for poachers in a South
African park at night.

from sensors, e.g., Wang et al. (2019); Basilico, De Nittis, and Gatti (2015). In particular, signaling
based on real-time information, e.g., signaling to indicate the presence of law enforcement as in Xu
et al. (2018), has been introduced and established as a fundamental area of work.

Despite the rising interest in real-time information and signaling, unfortunately, security games
literature has failed to consider uncertainty in sensing real-time information and signaling, hindering
real-world applicability of the game models. Previously, only some types of uncertainty have been
considered, such as uncertainty in the attacker’s observation of the defender’s strategy, attacker’s
payoff values, or attacker’s rationality as in Yin et al. (2011); Nguyen et al. (2014); Yang et al. (2011).
However, there are fundamentally new insights when handling uncertainties w.r.t. real-time sensing
and signaling, which we discuss now.

We make contributions in (i) modeling, (ii) algorithmic design and (iii) empirical evaluation. (i) We
are the first to model uncertainty in sensing and signaling settings for security games. We introduce a
novel reaction stage to the game model and construct a new signaling scheme, allowing the defender
to mitigate the impact of uncertainty. In fact, this signaling scheme exploits uncertain real-time
information and the defender’s informational advantage. For example, both the defender and attacker
may know that there is detection uncertainty; however, the defender has an informational advantage
in knowing that she has or has not actually detected the attacker, which she can exploit via a signaling
scheme to “mislead” the attacker who is uncertain as to whether he has been detected. (ii) To compute
the defender’s optimal strategy given uncertainty, we develop a novel algorithm, GUARDSS, that not
only uses six states to represent the type of protection a target has in a defender’s pure strategy but
also uses a new matching technique in a branch-and-bound framework. (iii) We conduct extensive
experiments on simulation based on our real-world deployment of a conservation drone system.

2 Related Work

Among the rich literature of Stackelberg security games (SSGs), such as Tambe (2011); Bucarey et al.
(2017), SSGs with real-time information have been studied recently. Some rely on human patrollers
for real-time information as in Zhang et al. (2019); Wang et al. (2019), others rely on sensors that can
notify the patroller when an opponent is detected as in de Cote et al. (2013); Basilico, De Nittis, and
Gatti (2015); De Nittis and Gatti (2018). Sensor placement (He et al. (2017)) and drone patrolling
(Rosenfeld, Maksimov, and Kraus (2018)) have also been studied. Spatial and detection uncertainties
in alarms are examined in Basilico, De Nittis, and Gatti (2016); Basilico, De Nittis, and Gatti (2017).
In all of these works, the sensors are only used to collect information, and do not actively and possibly
deceptively disseminate information to the attacker. One work that does consider mobile sensors with
detection and signaling capability is Xu et al. (2018). However, it does not consider uncertainty in
detection, which limits its capability in real-world settings. We add a new reaction stage and signaling
strategy without detection, and compactly encode the different states that the defender resources can
have at a target. Our model is therefore strictly more general than that in Xu et al. (2018).Our work is
also related to multistage game models, e.g., defender-attacker-defender sequential games (DAD),
e.g., Brown et al. (2006); Alderson et al. (2011). In DAD, the defender and attacker take turns to
commit to strategies while in our game, the defender commits to a strategy of all stages at once.
Extensive-form games (EFGs) also naturally model the sequential interaction between players, e.g.,
Kroer et al. (2017); Brown and Sandholm (2017); Moravčik et al. (2017), and recent works develop
algorithms to efficiently solve the Stackelberg equilibrium in general two-player EFGs, e.g., Černỳ,
Boỳanskỳ, and Kiekintveld (2018); Cermak et al. (2016). However, GUARDSS is more scalable than
the general EFG approach.
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3 Model

We consider a security game played between a defender and an attacker who seeks to attack one target.
The defender has k human patrollers and l sensors to be allocated to targets in set [N ] = {1, 2, ..., N}.
The sensor is the same as a drone in our motivation domain, and the attacker is the same as a poacher.
Let Ud/a

+/−(i) be the defender/attacker (d/a) utility when the defender successfully protects/fails
to protect (+/−) the attacked target i. By convention, we assume Ud

+(i) ≥ 0 > Ud
−(i) and

Ua
+(i) ≤ 0 < Ua

−(i) for any i ∈ [N ]. The underlying geographic structure of targets is captured by
an undirected graph G = (V,E) (e.g., Fig. 3). A patroller can move to any neighboring target and
successfully interdict an attack at the target at no cost.

Sensors cannot interdict an attack, but they can notify nearby patrollers to respond and signal to deter
the attacker. If the attacker is deterred by a signal (e.g., runs away), both players get utility 0. In
practice, often one signal (σ1, e.g., illuminating the lights on the drone) is a warning that a patroller is
nearby, while another signal (σ0, e.g., turning no lights on) indicates no patroller is nearby, although
these may be used deceptively. Theoretically, Kamenica and Gentzkow (2011) also showed two
signals suffice (without uncertainty). We thus use two signals: σ1 is a strong signal and σ0 is a weak
signal. When the attacker chooses one target to attack, he encounters one of four signaling states,
based on the target either having a patroller, nothing, or a drone. The attacker may encounter: (1) a
patroller and immediately get caught (state p); (2) nothing (state n); (3) a drone with signal σ0 (state
σ0); (4) a drone with signal σ1 (state σ1).

3.1 Modeling Uncertainty

In this paper, we focus on two prominent uncertainties motivated directly by the use of conservation
drones. The first is the detection uncertainty, when there is a limitation in the sensor’s capability, e.g.,
a sensor’s detection could be incorrect due to the inaccuracy of image detection techniques in the
conservation domain as in Bondi et al. (2018); Olivares-Mendez et al. (2015). We consider only false
negative detection in this paper because patrollers often have access to sensor videos, so the problem
of false positives can be partly resolved by having a human in the loop. In contrast, verifying false
negatives is harder, e.g., the attacker is easy to miss in the frame (Fig. 1) or is occluded although
there is an attacker. We therefore denote the false negative rate as γ for any sensor1.The second type
of uncertainty we consider is the observational uncertainty, where the true signaling state of the
target may differ from the attacker’s observation (e.g., a poacher may not be able to detect the drone’s
signal). We omit details regarding this type of uncertainty, as it primarily adds notational complexity.

3.2 Handling Uncertainty

Uncertainty motivates us to (1) add an explicit reaction stage, during which the defender can respond
or re-allocate patrollers to check on extremely uncertain sensors or previously unprotected targets,
for example, and (2) to signal occasionally when we do not detect anything. The timing of the game
is summarized in Fig. 2. In words, (i) the defender commits to a mixed strategy and then executes a
pure strategy allocation; (ii) the attacker chooses a target to attack; (iii) the sensors detect the attacker
with detection uncertainty; (iv) the sensors signal based on the signaling scheme; (v) the defender
re-allocates patrollers based on sensor detections and matching; (vi) the attacker observes the signal
with observational uncertainty; (vii) the attacker chooses to either continue the attack or run away. In
(v), if a sensor detects the attacker, then nearby patroller(s) (if any) always go to that target, and the
game ends; or if no sensors or patrollers detect the attacker, the patroller moves to another target to
check for the attacker. The attacker reaction occurs after the defender reaction because the attacker
reaction does not affect the defender reaction. In other words, there is no cost in reallocating the
defender even if the attacker runs away, so the defender should begin moving right away.

To solve this game model, we introduce Games with Uncertainty And Response to Detection with
Signaling Solver (GUARDSS), which employs the multiple LP approach for solving security games
[Conitzer and Sandholm (2006)], along with the branch-and-price framework to accelerate our solver.
This framework is well-known for solving large-scale optimization programs, but we modify the
subroutine called the slave problem for solving each LP, and carefully design an upper bound for
pruning LPs.

1False negative rate: P (no detection | poacher is present).
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Figure 3: A park in Google Maps with potential poaching hotspots and the resulting graph (edges for
< 5 km). Includes results from the case study, where GUARDSS performs best.

4 Conservation Drones

We have deployed a drone in South Africa, equipped with a thermal camera and detection system.
A photo of the drone team in South Africa currently is included in Fig. 1 (center). To ease the
challenges faced by these operators in coordination of drones with imperfect sensors and patrollers,
we apply GUARDSS and show that it provides positive results in simulation to support future potential
deployment. To facilitate the most realistic simulation possible, we utilize example poaching hotspots
in a real park. We cannot provide the exact coordinates in order to protect wildlife, but we selected
points based on geospatial features, and selected utilities (largest defender penalty is -16000 units) to
reflect the fact that the reward and penalty of the attackers are impacted by animal presence, price,
and distance to several park features used in Gholami et al. (2018). The targets are shown in Fig. 3
(left). Any targets within 5 km are connected via edges in the graph, as park rangers could cover
5km for response. The resulting graph is shown in Fig. 3 (center). For the simulation, we use 3
drones and 1 patroller. In the “no drones” scenario only, there are 0 drones and 1 patroller. We use
γ = 0.3 for detection uncertainty and no observational uncertainty. These details are directly input
to GUARDSS, and then a mixed strategy is determined to cover the park. Fig. 3 (right) shows the
defender expected utility in this park using GUARDSS with and without uncertainty, and several
baselines. A negative defender expected utility indicates that animals were lost, so a higher positive
number is ideal. Therefore, we perform better with GUARDSS than using a random allocation,
ignoring uncertainty, or forgoing drones. In fact, ignoring uncertainty is worse than forgoing drones
completely. These results emphasize the importance of correctly optimizing to get value from drones
even with uncertainty.

5 Conclusion

The loss due to ignoring uncertainty can be high such that sensors are no longer useful. Nevertheless,
by carefully accounting for uncertainty, uncertain information can still be exploited via a novel
reaction stage and signaling even upon no detection. Thriving under this uncertainty makes real-world
deployment of GUARDSS promising, as shown through simulation.
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