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Abstract

We show by counterexample that policy-gradient algorithms have no guarantees
of even local convergence to Nash equilibria in continuous action and state space
multi-agent settings. To do so, we analyze gradient-play in N—player general-sum
linear quadratic (LQ) games. In such games, the state and action spaces are con-
tinuous and a global Nash equilibrium can be found by solving coupled Ricatti
equations. Further, gradient-play in LQ games is equivalent to multi-agent policy-
gradient. We first prove that despite the non-convexity of the players’ objectives,
the only critical points of the gradient dynamics in these games are global Nash
equilibria. We then give sufficient conditions under which policy-gradient will
avoid the Nash equilibria, and generate a large number of general-sum LQ games
with Nash equilibria that satisfy these conditions. The existence of such games in-
dicates that one of the most popular approaches to solving reinforcement learning
problems in the classic reinforcement learning setting has no guarantee of con-
vergence in multi-agent settings. Moreover, the ease with which we can generate
these counterexamples suggests that such situations are in fact quite common.

1 Introduction

Interest in multi-agent reinforcement learning has seen a recent surge of late, and policy-gradient
algorithms are championed due to their potential scalability. Indeed, recent impressive successes of
multi-agent reinforcement learning have made use of policy optimization algorithms such as multi-
agent actor-critic [9, 12, 5], multi-agent proximal policy optimization [1], and even simple multi-
agent policy-gradients [7] in problems where the various agents have high-dimensional continuous
state and action spaces.

Despite these successes, a theoretical understanding of these algorithms in multi-agent settings is
still lacking. Missing perhaps, is a tractable yet sufficiently complex setting in which to study
these algorithms. Recently, there has been much interest in analyzing the convergence and sample
complexity of policy-gradient algorithms in the classic linear quadratic regulator (LQR) problem
from optimal control [6]. The LQR problem is a particularly apt setting to study the properties of
reinforcement learning algorithms due to the existence of an optimal policy which is a linear function
of the state and which can be found by solving a Ricatti equation. Indeed, the relative simplicity of
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the problem has allowed for new insights into the behavior of reinforcement learning algorithms in
continuous action and state spaces [3, 4, 10].

An extension of the LQR problem to the setting with multiple agents, known as a linear quadratic
(LQ) game, has also been well studied in the literature on dynamic games and optimal control [2].
As the name suggests, an LQ game is a setting in which multiple agents attempt to optimally control
a shared linear dynamical system subject to quadratic costs. Since the players have their own costs,
the notion of ‘optimality’ in such games is a Nash equilibrium.

Like LQR for the classical single-agent setting, LQ games are an appealing setting in which to
analyze the behavior of multi-agent reinforcement learning algorithms in continuous action and
state spaces since they admit only global Nash equilibrium in the space of linear feedback policies.
Moreover, these equilibria can be found by solving a coupled set of Ricatti equations. As such,
LQ games are a natural benchmark problem on which to test policy-gradient algorithms in multi-
agent settings. In the single-agent setting, it was recently shown that policy-gradient has global
convergence guarantees for the LQR problem [4]. These results have recently been extended to
projected policy-gradient algorithms in zero-sum LQ games [13].

Contributions. We present a negative result, showing that policy-gradient in general-sum LQ
games does not enjoy even local convergence guarantees, unlike in LQR. In particular, we show
that if each player randomly initializes their policy and then uses a policy-gradient algorithm there
exists an LQ game with a Nash equilibrium from which the players would diverge when randomly
initialized arbitrarily close to the equilibrium. Further, our numerical experiments indicate that LQ
games in which this occurs may be quite common. We also observe empirically that when players
fail to converge to the Nash equilibrium they do converge to stable limit cycles. These cycles do not
seem to have any readily apparent relationship to the Nash equilibrium of the game.

2 Preliminaries

We consider NV-player LQ games subject to a discrete-time dynamical system defined by
2(t+1) = Az(t) + LI, Biui(t)  2(0) = 2 ~ Dy, (1)

where z(t) € R™ is the state at time ¢, Dy is the initial state distribution, and u;(t) € R% is the
control input of player ¢ € 1,..., N. For LQ games, it is known that under reasonable assumptions,
linear feedback policies for each player that constitute a Nash equilibrium exist. [2]. Thus, we
consider that each player ¢ searches for a linear feedback policy of the form w;(t) = — K;z(t) that
minimizes their loss, where K; € R%*™. We use the notation d = Zi:l d; for the combined
dimension of the players’ parameterized policies.

As the name of the game implies, the players’ loss functions are quadratic functions given by
fi (ulv cee 7UN) = EZUNDU [Ztio Z(t)TQiz(t) + u; (t)TRiui (t)} ;

where (); and R; are the cost matrices for the state and input, respectively. Throughout our work we
make the following assumptions which guarantee that a Nash equilibrium exists [2].

Assumption 1. For each playeri € {1, ..., N}, the state and control cost matrices satisfy Q; = 0
and R; - 0. Further, at least one of (A, B;,/Q;) is stabilizable-detectable.

We note that the players are coupled through the dynamics since z(t) is constrained to obey the
update equation given in (1). We focus on a setting in which all players randomly initialize their
strategy and then perform gradient descent simultaneously on their own cost functions with respect
to their individual control inputs. That is, the players use policy-gradient algorithms of the form:

Ki,n—i—l = Kzn - ’YiDifi(Kl,n, ceey KN,n) Kz',() ~ D; )

where D; f;(-,-) denotes the derivatives of f; with respect to the i—th argument, {v;}X, are the
step-sizes of the players, and D; is player ¢’s initial distribution over policies. We note that there is a
slight abuse of notation here in the expression of D; f; as functions of the parameters K; as opposed
to the control inputs u;. To ensure there is no confusion between ¢ and n, we also point out that n
indexes the policy-gradient algorithm iterations while ¢ indexes the time of the dynamical system.



To simplify notation, we define S = E.,p, [> 1o 2(t)2(t)T]. We also denote the covariance

of the initial state as ¥y = E_,p,2(0)z(0)T. Direct computation verifies that for player 4, D; f; is
given by:

D;fi(Ki,...,Kn) =2(R;K; — B P,A)Sk, A3)
where A = A — Zf\;l B; K, is the closed—loop dynamics given all players’ control inputs. The
matrix P;, for given (K71, ..., Kx), is the unique positive definite solution to the Bellman equation:

P=ATPA+KI'RK;+Q;, ie{l,...,N}. 4)

Given that the players may have different control objectives and do not engage in coordination or
cooperation, the natural solution concept is that of a Nash equilibrium.

Definition 1. A feedback Nash equilibrium is a collection of policies (K7, ..., K3 ) such that, for
eachi € {1,...,N}:

fi(KS, . KPS KN < fi(KE, . K. K, VK € RGX™,

Under Assumption 1, a Nash equilibrium of an LQ game is known to exist and can be found by
solving coupled Ricatti equations using the method of Lyapunov iterations. The method is outlined
in [8] for continuous time LQ games, and an analogous procedure can be followed for discrete time.
Further information on the uniqueness of Nash equilibria in LQ games and the method of Lyapunov
iterations can be found in [2] and [8], respectively.

3 Results

Given our setup, we first show that the critical points of the gradient dynamics in LQ games are
all Nash equilibria. We then give sufficient conditions under which Nash equilibria will be almost
surely avoided. We conclude by showing empirical results that: 1. highlight the frequency of LQ
games that admit Nash equilibria which are avoided by policy gradient, and 2. show convergence to
limit cycles that have no link to the equilibria of the game.

3.1 All critical points of gradient-play in LQ games are Nash equilibria

Our first theoretical result is on the critical points of gradient play in general-sum LQ games. Letting
x = (Ky,...,Ky), the object of interest is the map w : R™? — R™9 defined as follows:

Difi(Ky, ..., KN)
w(zx) =
DNfN(K177KN)

Note that D, f; = 0f; /0K, and K; have both been converted into md; dimensional vectors.

Critical points of gradient-play are strategies * = (K71, ..., Kx) such that w(z) = 0. Recent work
has shown that when players perform gradient descent on their own cost functions in general-sum
games they may converge to critical points that are not Nash equilibria [11]. The following theorem
shows that despite the non-convexity of each players’ individual objective (see e.g. [4]), such non-
Nash equilibria cannot exist in the gradient dynamics of LQ games.

Theorem 1. Consider the set of stabilizing policies x* = (K7,..., K%) such that L~ > 0. If
D, fi(Kf,...,Ky)=0foreachi € {1,...,N}, then x* is a Nash equilibrium.

Theorem 1 shows that, just as in the single-player LQR setting and zero-sum LQ games [13], the
critical points of gradient-play in N—player general-sum LQ games are all Nash equilibria. We note
that the condition Xk > 0 can be satisfied by choosing Dy to have a full-rank covariance matrix.

Remark 1. We remark that a simple consequence of Theorem 1 is that when the Nash equilibrium
of the LQ game is unique and X is full rank, the gradient dynamics admit a unique critical point.
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Figure 1: A. Each point represents, for the given parameter value of r, the frequency of LQ games
out of 1000 randomly sampled A matrices where policy gradient would avoid a Nash equilibrium.
The solid line shows the average frequency of these games. B. In one of the randomly generated LQ
games, the two players converge to limit cycles where the Nash strategy is not the time-average.

3.2 Policy-gradient avoids Nash Equilibria that are saddle points of the dynamics

Given that the Nash equilibria are the only critical points of the gradient dynamics in LQ games, we
now give sufficient conditions under which gradient-play has no guarantees of even local, conver-
gence to these points. We first show that w is sufficiently smooth on the set of stabilizing policies.

Proposition 1. Consider an N—player LQ game. The vector-valued map w associated with the
game is twice continuously differentiable on S™?—i.e., w € C?*(S™4, §™4),

With the above smoothness result in hand we now give sufficient conditions under which the set of
initial conditions from which policy gradient converges to the Nash equilibrium is of measure zero.
This implies that the players will almost surely avoid the Nash equilibrium even if they randomly
initialize uniformly in a small ball around it. Let the Jacobian of the vector field w be denoted by
Duw. Given a point z, let \; be the eigenvalues of Dw(z), for j € {1,...,md}, whered = >, d;.

Theorem 2. Suppose D is chosen such that g > 0, and consider an N—player LQ game satisfying
Assumption 1 in which the Nash equilibrium is a saddle point of the policy-gradient dynamics: i.e.
the Jacobian of w evaluated at the Nash equilibrium x* = (K7,..., K} has eigenvalues \; is such
that Re(\;) < O0forj € {1,...,0} and Re(\;) > 0 forj € {{+1,...,md} for some { such that
0 < ¢ < md. Ifeach playeri € {1, ..., N} performs policy-gradient with a random initial strategy
K o ~ D; such that the support of D, is U, they will almost surely avoid the Nash equilibrium.

Theorem 2 gives us sufficient conditions under which policy-gradient in general-sum LQ games does
not even have local convergence guarantees. We remark that this is very different from the single-
player LQR setting, where policy-gradient will converge from any initialization in a neighborhood
of the optimal solution [4]. In zero-sum LQ games, the structure of the game also precludes any
Nash equilibrium from satisfying the conditions of Theorem 2 [11], meaning that local convergence
is always guaranteed. In [13], the guarantee of local convergence is strengthened to that of global
convergence for a class of projected policy-gradient algorithms in zero-sum LQ games.

In Figure 1A, we show the frequency of two-player LQ games in R? that admit Nash equilibria
that satisfy the conditions of Theorem 2. We fix X, By, B2, @1, @2, and R; and set Ry = r. For
each value of r we randomly sample 1000 different values of A, find a Nash equilibrium of the
game using Lyapunov iterations, and then numerically approximate Dw to see if the point would
be avoided by policy gradient. We find that up to 25% of such randomly sampled LQ games admit
Nash equilibria that are saddle points of the policy gradient dynamics. In Figure 1B we show that
when policy gradient is used in these games the players converge to stable limit cycles for which the
time-average is not Nash. As such, policy gradient does not even converge in a time-averaged sense.

These theoretical and numerical results imply that policy-gradient algorithms have no guarantees of
local, and consequently global, convergence in general-sum LQ games. Further, they highlight that
these issues are not mere edge cases and may be quite common in practice.
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