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Abstract
Regret minimization is a powerful tool for solving large-scale problems; it was
recently used in breakthrough results for large-scale extensive-form game solving.
This was achieved by composing simplex regret minimizers into an overall regret-
minimization framework for extensive-form game strategy spaces. In this paper
we study the general composability of regret minimizers. We derive a calculus for
constructing regret minimizers for composite convex sets that are obtained from
convexity-preserving operations on simpler convex sets. We show that local regret
minimizers for the simpler sets can be combined with additional regret minimizers
into an aggregate regret minimizer for the composite set. As one application, one
can show that the CFR framework can be constructed easily from our framework.
One can also show ways to include curtailing (constraining) operations into our
framework. For one, they enable the construction of CFR generalization for
extensive-form games with general convex strategy constraints that can cut across
decision points.

1 Introduction

In this paper we introduce a general methodology for composing regret minimizers. We derive a set of
rules for how regret minimizers can be constructed for composite convex sets via a calculus of regret
minimization: given regret minimizers for convex sets X ,Y we show how to compose these regret
minimizers for various convexity-preserving operations (e.g., intersection, convex hull, Cartesian
product), in order to arrive at a regret minimizer for the resulting composite set.

Our approach treats the regret minimizers for individual convex sets as black boxes, and builds a
regret minimizer for the resulting composite set by combining the outputs of the individual regret
minimizers. This is important because it allows freedom in choosing the best regret minimizer for
each individual set (from either a practical or theoretical perspective). For example, in practice the
regret matching (Hart & Mas-Colell, 2000) and regret matching+ (RM+) (Tammelin et al., 2015)
regret minimizers are known to perform better than theoretically-superior regret minimizers such as
Hedge (Brown et al., 2017), while Hedge may give better theoretical results when trying to prove the
convergence rate of a construction through our calculus.
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One way to conceptually view our construction is as regret circuits: in order to construct a regret
minimizer for some convex set X that consists of convexity-preserving operations on (say) two sets
X1,X2, we construct a regret circuit consisting of regret minimizers for X1 and X2, along with a
sequence of operations that aggregate the results of those circuits in order to form an overall circuit
for X . As an application, the correctness and convergence rate of the CFR algorithm can be proven
easily through our calculus. The recent Constrained CFR algorithm (Davis et al., 2019) can also
be constructed via our framework. Finally, this approach can be used to construct the first efficient
regret minimizer for extensive-form correlated equilibrium in two-player general-sum games with no
chance moves (Farina et al., 2019)

2 Regret Minimization

In online convex optimization (Zinkevich, 2003), a decision maker repeatedly interacts with an
unknown environment by making a sequence of decisions x1,x2, . . . from a convex and compact
set X ⊆ Rn. After each decision xt, the decision maker faces a linear loss function `t(xt), which is
unknown to the decision maker until after the decision is made. So, we are constructing a device that
supports two operations: (i) it provides the next decision xt+1∈X and (ii) it receives/observes the
linear loss function `t used to “evaluate” decision xt.

The cumulative regret measures the difference between the loss cumulated by the sequence of
decisions x1, . . . ,xT and the loss that would have been cumulated by playing the best-in-hindsight
time-independent decision x̂. Formally, the cumulative regret up to time T is

RT(X ,F) :=

T∑
t=1

`t(xt)− min
x̂∈X

{
T∑
t=1

`t(x̂)

}
. (1)

The device is called a regret minimizer if it satisfies the desirable property of Hannan consistency:
the average regret approaches zero, that is, RT(X ,F) grows sublinearly in T . Formally, in our notation,
we have the following definition.
Definition 1 ((X ,F)-regret minimizer). Let X be a convex and compact set and let L be the set
of real linear functions on the domain X . An (X ,L)-regret minimizer is a function that selects
the next decision xt+1 ∈ X given the history of decisions x1, . . . ,xt and observed loss functions
`1, . . . , `t ∈ L, so that the cumulative regret RT(X ,L) = o(T ).

Regret minimizers are useful for converging to convex-concave saddle-point problems. CFR is a very
well-known regret minimizer for the strategy space of an extensive-form game.

3 Cartesian Product

(X ,L)

(Y,L)

xt

yt

(xt,yt)`t−1

`t−1(·,0)

`t−1(0, ·)

Figure 1: Regret circuit for the Cartesian product X×Y .

In this section, we show how to combine
an (X ,L)- and a (Y,L)-regret minimizer to
form an (X × Y,L)-regret minimizer. Any
linear function ` : X×Y → R can be written
as `(x,y) = `X (x)+`Y (y) where the linear
functions `X : X → R and `Y : Y → R are
defined as `X : x 7→ `(x,0) and `Y : y 7→
`(0,y). It is immediate to verify that

RT(X×Y,L) =

(
T∑
t=1

`tX (xt)− min
x̂∈X

{
T∑
t=1

`tX (x̂)

})
+

(
T∑
t=1

`tY (yt)− min
ŷ∈Y

{
T∑
t=1

`tY (ŷ)

})
= RT(X ,L) +RT(Y,L).

In other words, it is possible to minimize regret on X × Y by simply minimizing it on X and Y
independently and then combining the decisions, as in Figure 1.

4 Affine Transformation and Minkowski Sum

Let H : E → F be an affine map between two Euclidean spaces E and F , and let X ⊆ E be a convex
and compact set. We now show how an (X ,L)-regret minimizer can be employed to construct a
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(X ,L) xt H(xt)`t−1 `t−1
H (·)− `t−1

H (0)

Figure 2: Regret circuit for the image H(X ) of X under the affine transformation H.

(H(X ),L)-regret minimizer. Since every y ∈ H(X ) can be written as y = H(x) for some x ∈ X , the
cumulative regret for an (H(X ),L)-regret minimizer can be expressed as

RT(H(X ),L) =

T∑
t=1

(`t ◦H)(xt)− min
x̂∈X

{
T∑
t=1

(`t ◦H)(x̂)

}
.

Since `t and H are affine, their composition `tH := `t ◦H is also affine. Hence, RT(H(X ),L) is the same
regret as an (X ,L)-regret minimizer that observes the linear function `tH(·) − `tH(0) instead of `t.
The construction is summarized by the circuit in Figure 2. As an application, we can use the above
construction to form a regret minimizer for the Minkowski sum X + Y := {x+ y : x ∈ X ,y ∈ Y} of
two sets.

5 Convex Hull

(X ,L)

(Y,L)

(∆2,L)

xt

xt−1

yt

yt−1

λt1x
t + λt2y

t`t−1 `t−1
λ λt

Figure 3: Regret circuit for the convex hull
co{X ,Y}.

In this section, we show how to combine an
(X ,L)- and a (Y,L)-regret minimizer to form
a (co{X ,Y},L)-regret minimizer, where co de-
notes the convex hull operation,
co{X ,Y} = {λ1x + λ2y : x ∈ X ,y ∈
Y, (λ1, λ2) ∈ ∆2}, and ∆2 := {(λ1, λ2) ∈ R2

+ :

λ1 + λ2 = 1} is the two-dimensional simplex.
We can think of a (co{X ,Y},L)-regret mini-
mizer as picking a triple (λt,xt,yt) ∈ ∆2 ×
X × Y at each time point t. One can show that
in order to make “good decisions” in the con-
vex hull co{X ,Y}, we can let two independent
(X ,L)- and (Y,L)-regret minimizers pick good decisions in X and Y respectively, and then use a
third regret minimizer (∆2,L) that decides how to “mix” the two outputs. This way, we break the task
of picking the next recommended triple (λt,xt,yt) into three different subproblems, two of which
can be run independently. Figure 3 shows the regret circuit for the convex hull. The loss function `tλ
is defined as

`tλ : ∆2 3 (λ1, λ2) 7→ λ1`
t(xt) + λ2`

t(yt).

One can show that the overall cumulative regret of the construction is

RT(co{X ,Y},L) ≤ R
T
(∆2,L) + max{RT(X ,L), R

T
(Y,L)}.

The construction shown in Figure 3 can be extended to handle the convex hull co{X1, . . . ,Xn} of
n sets as follows. First, the input loss function `t−1 is fed into all the (Xi,L)-regret minimizers
(i = 1, . . . , n). Then, the loss function `tλ, defined as

`tλ : ∆n 3 (λ1, . . . , λn) 7→ λ1`(x
t
1) + · · ·+ λn`(x

t
n),

is input into a (∆n,L)-regret minimizer, where ∆n is the n-dimensional simplex. Finally, at each time
instant t, the n decisions xt1, . . . ,x

t
n output by the (Xi,L)-regret minimizers are combined with the

decision λt output by the (∆n,L)-regret minimizer to form λt1x
t
1 + · · ·+ λtnx

t
n.

V -polytopes Our construction can be directly applied to construct an (X ,L)-regret minimizer for
a V -polytope X = co{v1, . . . ,vn} where v1, . . . ,vn are n points in a Euclidean space E. Of course,
any ({vi},L)-regret minimizer outputs the constant decision vi. Hence, our construction (Figure 3)
reduces to a single (∆n,L)-regret minimizer that observes the (linear) loss function

`tλ : ∆n 3 (λ1, . . . , λn) 7→ λ1`
t(v1) + · · ·+ λn`

t(vn).

The observation that a regret minimizer over a simplex can be used to minimize regret over a V -
polytope already appeared in Zinkevich (2003), Schuurmans & Zinkevich (2016), and Farina et al.
(2017, Theorem 3).
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6 Application: Derivation of CFR

The strategy space of a single player in an extensive-form game is a treeplex, which can be viewed
recursively as a series of convex hull and Cartesian product operations. This perspective is also used
when constructing distance functions for first-order methods for EFGs (Hoda et al., 2010; Kroer et al.,
2015, 2018).

Hence, one can apply our convex hull and Cartesian product constructions inductively to obtain
a regret minimizer for the strategy space of a perfect-recall extensive-form game. The resulting
algorithm is exactly Counterfactual regret minimization (CFR) (Zinkevich et al., 2007).

7 Intersection with a Closed Convex Set

In this section we consider constructing an (X ∩ Y,L)-regret minimizer from an (X ,L)-regret
minimizer, where Y is a closed convex set such that X ∩Y 6= ∅. As it turns out, this is always possible,
and can be done by letting the (X ,L)-regret minimizer give decisions in X , and then projecting them
onto the intersection X ∩ Y.

We will use a Bregman divergence D(y‖x) := d(y)− d(x)−〈∇d(x),y−x〉 as our notion of distance
between the points x and y, where the distance generating function (DGF) d is µ-strongly convex and
β-smooth (that is, d is differentiable and its gradient is Lipschitz continuous with Lipschitz constant
β). Our construction makes no further assumptions on d, so the most appropriate DGF can be used
for the application at hand. When d(x) = ‖x‖22 we obtain D(y‖x) = ‖y − x‖22, so we recover the
usual Euclidean distance between x and y. In accordance with our generalized notion of distance, we
define the projection of a point x ∈ X onto X ∩ Y as πX∩Y (x) = argminy∈X∩Y D(y‖x). For ease of
notation, we will denote the projection of x onto X ∩ Y as [x]; since X ∩ Y is closed and convex, and
since D(·‖x) is strongly convex, such projection exists and is unique. The cumulative regret of the
(X ∩ Y,L)-minimizer is

RT(X∩Y,L) =

T∑
t=1

`t([xt])− min
x̂∈X∩Y

{
T∑
t=1

`t(x̂)

}
=

T∑
t=1

`t([xt]−xt)− min
x̂∈X∩Y

{
T∑
t=1

`t(x̂−xt)

}
, (2)

where the second equality holds by linearity of `t. The first-order optimality condition for the
projection problem is 〈∇d(xt) − ∇d([xt]), x̂ − [xt]〉 ≤ 0 ∀ x̂ ∈ X ∩ Y. Consequently, provided
αt ≥ 0 for all t,

min
x̂∈X∩Y

{
T∑
t=1

`t(x̂− xt)

}
≥ min

x̂∈X

{
T∑
t=1

`t(x̂− xt) +

T∑
t=1

αt〈∇d(xt)−∇d([xt]), x̂− [xt]〉

}
(3)

(note the change in the domain of the minimum between the left- and right-hand side). The role of
the αt coefficients is to penalize choices of xt that are in X \ Y. In particular, if

1

µ

T∑
t=1

`t([x
t]− xt) ≤

T∑
t=1

αt‖[xt]− xt‖2, (4)

then, by µ-strong convexity of d, we have

T∑
t=1

`t([x
t]−xt) ≤

T∑
t=1

αt〈∇d(xt)−∇d([xt]),xt−[xt]〉. (5)

Substituting (5) and (3) into Equation (2) we get

RT(X∩Y,L) ≤

(
T∑
t=1

`t(xt) + αt〈∇d(xt)−∇d([xt]),xt〉

)
− min

x̂∈X

{
T∑
t=1

`t(x̂) + αt〈∇d(xt)−∇d([xt]), x̂〉

}
,

which is the regret observed by an (X ,L)-regret minimizer that at each time t observes the linear loss
function

˜̀t : x 7→ `t(x) + αt〈∇d(xt)−∇d([xt]),x〉. (6)

Hence, as long as condition (4) holds, the regret circuit of Figure 4 is guaranteed to be Hannan
consistent. On the other hand, condition (4) can be trivially satisfied by the deterministic choice
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(X ,L) [xt]

[xt−1]

πX∩Y
+

`t−1 ˜̀t−1

αt−1〈∇d(xt−1)−∇d([xt−1]), · 〉

xt

xt−1

Figure 4: Regret circuit representing the construction of an (X ∩ Y,L)-regret minimizer using a
(X ,L)-regret minimizer.

αt =

0 if xt ∈ X ∩ Y
max

{
0,

`t([xt]− xt)
µ‖[xt]− xt‖2

}
otherwise.

The fact that αt can be arbitrarily large (when xt and [xt] are very close) is not an issue. Indeed, αt is
only used in ˜̀t (Equation 6) and is always multiplied by a term whose magnitude grows proportionally
with the distance between xt and [xt]. In fact, the norm of the functional ˜̀t is bounded:

‖˜̀t‖ ≤ ‖`t‖+

∣∣∣∣ `t([xt]− xt)µ‖[xt]− xt‖2

∣∣∣∣ · ‖∇d(xt)−∇d([xt])‖ ≤
(

1 +
β

µ

)
‖`t‖,

In other words, our construction dilates the loss functions by at most a factor 1 + β/µ. For instance,
when d(x) = ‖x‖2, this dilation factor is equal to 2.
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