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Abstract

While generative adversarial networks (GANs) are capable of producing high
quality samples, they suffer from instability and mode collapse during training. To
alleviate this problem, multiple authors have proposed gradient penalties on the
discriminator, which are thought of as replacing the minimization of the Jensen-
Shannon (JS) divergence implicit in the original GAN framework with minimiza-
tion of the Wasserstein distance. In the present work, we provide a mechanism,
implicit competitive regularization, by which rational play of the two players’ can
stabilize the dynamics of a GAN, even if the Jensen-Shannon divergence is not
meaningful. We furthermore observe that competitive gradient descent (CGD)
(Schäfer and Anandkumar, 2019) can take advantage of this mechanism in or-
der to achieve stable GAN training, without imposing gradient penalties. Our
numerical experiments suggest that GAN training with CGD is stable and only
needs regularization to prevent overfitting, to a similar extent as ordinary neural
networks.

1 Introduction

Generative adversarial networks (GANs): (Goodfellow et al., 2014) are powerful generative
models that constitute the state of the art on a variety of problems. Whereas other methods, like
variational autoencoders (VAEs) (Kingma and Welling, 2013; Rezende et al., 2014), optimize target
functionals given a priori, GANs are constructed from a competitive game between a generator that
tries to generate realistic samples, and a discriminator that tries to distinguish real data from artificial
samples. Both players are represented as neural networks, each of which iteratively updates its
parameters to improve their respective loss functions. While GANs are capable of producing high
quality samples, their training is known to suffer from instability and mode collapse, a phenomenon
whereby the diversity of the produced samples drops dramatically.

Unbiased loss functions: In order to define a game between generator and discriminator, we need to
define their respective loss functions. The original GAN paper suggested to use the relative cross
entropy loss function, resulting in the zero-sum or minimax game

min
G

max
D

1

2
Ex∼Pdata

[logD(x)] + 1

2
Ex∼G [log (1−D(x))] . (1)

This is the first example of what we call an unbiased loss function, which more generally leads to
games of the form

min
G

Ex∼Pdata
[freal (D (x))] + Ex∼G [ffake (D (x))] (2)

min
D

Ex∼Pdata
[greal (D (x))] + Ex∼G [gfake (D (x))] . (3)
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We call these loss functions unbiased since they only evaluate the generator and discriminator in
terms of their performance in generating and identifying synthetic samples. Other examples of this
class are the nonsaturating loss (Goodfellow et al., 2016)[Section 3.2.3], f -GAN (Nowozin et al.,
2016), and LSGAN (Mao et al., 2017).

Biased loss functions: When taking the maximum over all possible D, Equation (1) amounts to
minimization of the Jensen-Shannon (JS) divergence between G and Pdata. This has motivated the
interpretation of the original GAN loss as an approximate minimization of the JS divergence where
we approximate the inner optimization over D by making a finite number of gradient ascent updates
on D. Beginning with Arjovsky and Bottou (2017), a number of works have used this point of view
to explain the instability and mode collapse in GAN training (Arjovsky et al., 2017; Roth et al.,
2017; Arora et al., 2017). Since Pdata is generally atomic (finite data) and often concentrated on
low-dimensional structures while G is the differentiable push-forward of a continuous distribution,
Pdata and G will usually be mutually singular, leading to a maximal JS divergence that does not yield
useful gradient information. Indeed, this pathology is present for all unbiased loss functions since
if the support of Pdata has measure zero under G, a sufficiently powerful discriminator can fully
minimize Ex∼Pdata

[greal (D (x))] without compromising the minimization of Ex∼G [gfake (D (x))].
To resolve this issue, Arjovsky and Bottou (2017); Arjovsky et al. (2017) introduce Wasserstein GAN
(WGAN) as the solution to the minimax problem

min
G

max
‖D‖1≤1

Ex∼Pdata
[D(x)]− Ex∼PG [D(x)] ,

where ‖ · ‖1 denotes the Lipschitz seminorm. For a perfect discriminator, the above quantity is equal
to the Wasserstein distance, which provides a nontrivial notion of distance even among mutually
singular measures. While the initial WGAN imposes the Lipschitz constraint by using weight
clipping, Gulrajani et al. (2017) proposed WGAN gradient penalty (WGAN-GP) that approximately
enforces it by penalizing the gradient of ‖∇D‖. Subsequently, a number of similar penalties have
been introduced Arora et al. (2017); Kodali et al. (2017); Miyato et al. (2018); Adler and Lunz (2018);
Mroueh et al. (2017). The games resulting from these losses have the general form

min
G

Ex∼Pdata
[freal (D (x))] + Ex∼G [ffake (D (x))] + F (G,D) (4)

min
D

Ex∼Pdata
[greal (D (x))] + Ex∼G [gfake (D (x))] +G(G,D), (5)

where F (G,D), G(G,D) might take on the value ∞ if a constraint, like ‖D‖1 ≤ 1, is violated.
We call these loss functions biased loss functions, since the terms F (G,D) and G(G,D) express
a preference for certain G and D that need not depend on their performance in generating and
identifying synthetic samples.

Is bias necessary? Biased loss functions based on gradient penalties have become popular among
practitioners as ways of mitigating instability and mode collapse. However, they are dissatisfying
from a conceptual perspective since they require the choice of a metric on sample space to measure
the size of gradients. In practice, this metric is typically chosen as `2, which is clearly a poor notion
of similarity if the datapoints are for example images of human faces. Unbiased loss functions, in
contrast, have the intriguing property that they do not require a choice of metric! Rather, the notion
of similarity underlying the samples of GANs with unbiased loss functions arises from the subtle
interplay of architectural "implicit biases" and the use of stochastic gradient based optimization.
Based on the observations that neural networks seem to be reasonably good at imitating human
perception, we believe that it is this feature that allows GANs to produce much sharper and realistic
images than any other method. Therefore, it is desirable to mitigate the instability of unbiased loss
functions without artificially imposing a metric on sample space.

Our contribution: In this work we investigate whether the stabilization of GANs requires augment-
ing the loss function with additional penalties or whether stable algorithms can be obtained even for
unbiased loss functions. By studying a toy example we observe that if the two players have limited
information of the optimization landscape and are aware of the competitive nature of the game,
rational play can lead to stable behavior even if either player can receive arbitrarily large rewards by
diverging towards infinity. We then argue empirically that key features of our toy problem are present
in real GANs, and rational play can therefore mitigate the pathological behavior observed by Arjovsky
and Bottou (2017) without adding additional regularization. We then point out that the updates of
competitive gradient descent (CGD) introduced by Schäfer and Anandkumar (2019) incorporate a
suitable notion of rational play as outlined in the toy example. Under competitive gradient descent,
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the two agents prefer strategies that are robust to the actions of each other, which greatly increases
the stability of the resulting algorithm. This leads to a form of regularization that does not require the
choice of a metric on sample space and which we call implicit competitive regularization.

2 Implicit competitive regularization

What is the solution of a GAN?: The main objection to the original GAN loss has been that even
for a well-trained generator there exist discriminators that can distinguish it arbitrarily well from
the true data, making the minimax interpretation of GANs meaningless. While Arora et al. (2017)
pointed out that the set of relevant discriminators is limited by the capacity of the discriminator we
observe experimentally, just as Arjovsky and Bottou (2017), that even capable generators can incur
large losses under a discriminator that is optimized with respect to this particular generator. While
Kodali et al. (2017), as well as multiple works on the algorithmic aspects of GAN training Daskalakis
et al. (2017); Daskalakis and Panageas (2018); Jin et al. (2019) emphasize the view of GANs as
local Nash equilibria, our experiments in Figure 2 suggest the discriminator can still be improved
significantly with a small number of updates. Berard et al. (2019) further observed that in many good
GAN solutions the generator is not at a local minimum, casting further doubt at the interpretation of
GANs as seeking local Nash equilibria. We will now illustrate a mechanism by which the rational
actions of players under limited information can even stabilize pairs of globally worst strategies.

A simple toy problem: Consider the zero-sum game given by
min
x∈R

max
y∈R
− exp(x2)− αxy + exp(y2) (6)

where α � 1 is a large but fixed parameter. This game does not have a global Nash equilibrium,
since each player can always achieve an exponentially increasing reward by moving towards infinity.
It furthermore does not have local Nash equilibria, since the curvature of the objective function is
always negative in x and positive in y.
Despite the absence of equilibria in the classical sense, we could hope that a suitable iterative play
by the two players has stable behavior. Let us assume to this end that x starts in 0 and y in 2 and
that at each round, both players are allowed to change their strategy by at most distance one. If the
players aim to mimimize their cumulative loss over the course of the game, a winning strategy of
y is still to move towards +∞ as quickly as possible (see Figure 1). Since limiting the size of the
players steps did not suffice to stabilize their dynamics, we could now limit the players to only using
local information. We assume that at the k − th step, the player x (y) only has access to to objective
funcition on [xk − 1, xk + 1]× {y} ({x} × {yk − 1, yk + 1}) and tries to minimize their loss in the
next round assuming, for the lack of additional information, that the loss function will stay the same.
As shown in Figure 1, the strategies initially exhibit oscillations that slow down divergence until
evenually the exponential terms dominate (see Figure 1). This behavior is similar to the oscillations of
simultaneous gradient descent and arises from both players being ignorant of each other’s presence.
Alternatively, we can consider the situation where at each step, both players have access to the loss
function on [xk − 1, xk + 1]× [yk − 1, yk + 1] and try to minimize their loss, aware that the other
player tries to minimize theirs. In our toy example, the resulting optimal strategies are deterministic
and result in stable dynamics (see Figure 1).

Optimal strategies in GANs are brittle: Even though both players were able to achieve arbitrarily
low losses by moving off to infinity in the above toy example, the combination of iterative play,
limited information, and strategic behavior lead to stable dynamics. We will now investigate whether
a similar mechanism could be at play in allowing GANs to achieve meaningful solutions even
though for any given generator G there exists a discriminator D that achieves a loss of maximal JS
divergence. The key feature at play in the toy example was that as any player moves towards infinity,
it the resulting strategy becomes more and more vulnerable to counterplay of the other player. The
corresponding behavior in GANs would be that as D achieves better and better performance against a
given discriminator, it also becomes more and more vulnerable to changes in the generator’s strategy.
Indeed, Figure 2 shows that the near-optimal discriminators of the experiment in Figure 2 incur
large losses, after just a few iterations of training the generator. Thus, even without regularization, a
rational discriminator might refrain from fully maximizing the loss. However, as we have seen in
the toy example, naive gradient dynamics can nevertheless lead to unstable behavior and divergence,
leading us to suspect that the reason for instability in GANs is not an inadequate loss function but
rather the overly naive notion of strategic play modelled by simultaneous or alternating gradient
descent.
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Figure 1: Competitive regularization in toy problem: Under full information, each player moves
towards infinity as quickly as possible (first panel). Under limited information, but without accounting
each other’s actions, the players oscillate and eventually diverge (second panel). Under both limited
information and awareness of the opponent, the trajectories become stable (third panel).

Figure 2: Overtraining Discriminators:We begin by training a GAN on MNIST using Adam for 21
(11) epochs, saving the resulting generator (samples in first panel) and discriminator as a "checkpoint".
We then overtrain the discriminator while keeping the generator of the checkpoint fixed, achieving
low discriminator loss (second panel). As indicated by the increasing gradient norm of the generator
during training (third panel), the resulting discriminator is brittle and incurs large losses as we start
training the generator again (fourth panel).

Competitive gradient descent uses implicit competitive regularization: As opposed to the toy
example, in gradient based optimization the player don’t have access to the full objective function
within a neighborhood, but rather to a local taylor approximation of the loss function. As this
Taylor approximation gradually becomes unreliable as we move away from where we computed the
derivatives, we add an additional regularization term when determining the update step Competitive
gradient descent (Schäfer and Anandkumar, 2019) to use the Nash equilibrium of a quadratically
regularized local bilinear approximation to the game as updates at each step. In the special case of a
zero-sum game with loss of f for player x, this amounts to the update rule

xk+1 = xk − η
(
Id+η2D2

xyfD
2
yxf

)−1 (∇xf + ηD2
xyf∇yf

)
yk+1 = yk + η

(
Id+η2D2

yxfD
2
xyf

)−1 (∇yf − ηD2
yxf∇xf

)
.

Here, ∇xf corresponds to gradient descent in x, while ηD2
xyf∇yf models the anticipation of y

playing gradient descent. The term
(
Id+η2D2

xyfD
2
yxf

)−1
corresponds to avoiding brittle updates,

the result of which strongly depends on the the actions of the other players. In the limit of large
Dxyf this restricts updates to the subspace orthogonal to the singular vectors of Dxyf . We observe
in practice that this additional regularization, which we refer to as implicit competitive regulariztation
(ICR), can stabilize the dynamics of GAN training. This is remarkable, since ICR does not require the
introduction of additional biases but emerges from the subtle interplay of architecture and strategic
behavior of the two networks.

Conclusion: Our empirical results suggest that training GANs with CGD can lead to stable training
dynamics even in the absence of any form of regularization. While adding some regularization
like dropout, early stopping, noise, weight decay, or gradient penalty might be necessary to prevent
overfitting (just like in ordinary neural networks), we argue that when using CGD there is no
fundamental lack of stability that needs to be addressed by a particular modification of the loss
function.
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