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Abstract

In the context of multi-player, general-sum games, there is an increasing interest in
solution concepts modeling some form of communication among players, since
they can lead to socially better outcomes with respect to Nash equilibria, and may
be reached through learning dynamics in a decentralized fashion. In this paper,
we focus on coarse correlated equilibria (CCEs) in sequential games. Simple
arguments show that CFR—working with behavioral strategies—may not converge
to a CCE. First, we devise a simple variant (CFR-S) which provably converges to
the set of CCEs, but may be empirically inefficient. Then, we design a variant of
the CFR algorithm (called CFR-Jr) which approaches the set of CCEs with a regret
bound sub-linear in the size of the game, and is shown to be dramatically faster
than CFR-S and the state-of-the-art algorithms to compute CCEs.

1 Introduction
A number of recent studies explore relaxations of the classical notion of equilibrium (i.e., the
Nash equilibrium (NE) [22]), allowing to model communication among the players [2, 12, 26].
Communication naturally brings about the possibility of playing correlated strategies. These are
customarily modeled through the correlated equilibrium (CE) [1]. A popular variation of the CE
is the coarse correlated equilibrium (CCE), which only prevents deviations before knowing the
recommendation [21]. In sequential games, CEs and CCEs are well-suited for scenarios where the
players have limited communication capabilities and can only communicate before the game starts,
such as, e.g., military settings where field units have no time or means of communicating during
a battle, collusion in auctions where communication is illegal during bidding, and, in general, any
setting with costly communication channels or blocking environments. CCEs present a number
of appealing properties. A CCE can be reached through simple (no-regret) learning dynamics in
a decentralized fashion [14, 16], and, in several classes of games (such as, e.g., normal-form and
succinct games [23, 18]), it can be computed exactly in poly-time. Furthermore, an optimal (i.e.,
social-welfare-maximizing) CCE may provide arbitrarily larger welfare than an optimal CE or
NE [10]. However, the problem of computing CCEs has been addressed only for some specific games
with particular structures [2, 17]. In this work, we study how to compute CCEs in the general class of
games which are sequential, general-sum, and multi-player.

In sequential games, it is known that, when there are two players without chance moves, an optimal
CCE can be computed in polynomial time [10]. Celli et al. [10] also provide an algorithm (with no
polynomiality guarantees) to compute solutions in multi-player games, using a column-generation
procedure with a MILP pricing oracle. As for computing approximate CCEs, in the normal-form
setting, any Hannan consistent regret-minimizing procedure for simplex decision spaces may be
employed to approach the set of CCEs [4, 11]—the most common of such techniques is regret
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matching (RM) [3, 16]. However, approaching the set of CCEs in sequential games is more demanding.
One could represent the sequential game with its equivalent normal form and apply RM to it. However,
this would result in a guarantee on the cumulative regret which would be exponential in the size
of the game tree (see Section 2). Thus, reaching a good approximation of a CCE could require
an exponential number of iterations. The problem of designing learning algorithms avoiding the
construction of the normal form has been successfully addressed in sequential games for the two-
player, zero-sum setting. This is done by decomposing the overall regret locally at the information sets
of the game [13]. The most widely adopted of such approaches are counterfactual regret minimization
(CFR) [33] and CFR+ [30, 29], which originated variants such as [7, 9]. These techniques were the
key for many recent remarkable results [5, 6, 8, 20]. However, these algorithms work with players’
behavioral strategies rather than with correlated strategies, and, thus, they are not guaranteed to
approach CCEs in general-sum games, even with two players. The only known theoretical guarantee
of CFR when applied to multi-player, general-sum games is that it excludes dominated actions [15].
Some works also attempt to apply CFR to multi-player, zero-sum games, see, e.g., [24].

2 Preliminaries
We focus on extensive-form games (EFGs) with imperfect information and perfect recall. We
denote the set of players as P ∪ {c}, where c is the Nature (chance) player (representing exogenous
stochasticity). H is the set of nodes of the game tree, and a node h ∈ H is identified by the ordered
sequence of actions from the root to the node. Z ⊆ H is the set of terminal nodes. For every
h ∈ H \ Z, we let P (h) be the unique player who acts at h and A(h) be the set of actions available
at h. For each player i ∈ P , ui : Z → R is the payoff function. We denote by ∆ the maximum range
of payoffs in the game. We represent imperfect information using information sets (from here on,
infosets). Any infoset I belongs to a unique player i, and it groups nodes which are indistinguishable
for that player, i.e., A(h) = A(h′) ∀h, h′ ∈ I . Ii denotes the set of all player i’s infosets. We denote
by A(I) the set of actions available at I . We denote with πi a behavioral strategy of player i, which
is a vector defining a probability distribution at each player i’s infoset. Given πi, we let πi,I be the
(sub)vector representing the probability distribution at I ∈ Ii, with πi,I,a denoting the probability
of choosing action a ∈ A(I). An EFG has an equivalent tabular (normal-form) representation. A
normal-form plan for player i is a vector σi ∈ Σi =×I∈Ii A(I) which specifies an action for each
player i’s infoset. Then, an EFG is described through a |P|-dimensional matrix specifying a utility
for each player at each joint normal-form plan σ ∈ Σ =×i∈P Σi. The expected payoff of player
i, when she plays σi ∈ Σi and the opponents play normal-form plans in σ−i ∈ Σ−i =×j 6=i∈P Σj ,
is denoted, with an overload of notation, by ui(σi, σ−i). Finally, a normal-form strategy xi is a
probability distribution over Σi. We denote by Xi the set of the normal-form strategies of player i.
Moreover, X denotes the set of joint probability distributions defined over Σ. We also let ρπi be a
vector in which each component ρπiz is the probability of reaching the terminal node z ∈ Z, given
that player i adopts the behavioral strategy πi and the other players play so as to reach z. Similarly,
given a normal-form plan σi ∈ Σi, we define the vector ρσi . Finally, Z(σi) ⊆ Z is the subset of
terminal nodes which are (potentially) reachable if player i plays according to σi ∈ Σi.

The classical notion of CE by Aumann [1] models correlation via the introduction of an exter-
nal mediator who, before the play, draws σ∗ ∈ Σ according to a publicly known x∗ ∈ X ,
and privately communicates each recommendation σ∗i to the corresponding player. After ob-
serving their recommended plan, each player decides whether to follow it or not. A CCE is a
relaxation of the CE, defined by Moulin and Vial [21], which enforces protection against devia-
tions which are independent from the sampled joint normal-form plan. Formally, a CCE of an
EFG is a probability distribution x∗ ∈ X such that, for every i ∈ P , and σ′i ∈ Σi, it holds:∑
σi∈Σi

∑
σ−i∈Σ−i

x∗(σi, σ−i) (ui(σi, σ−i)− ui(σ′i, σ−i)) ≥ 0. CCEs differ from CEs in that a
CCE only requires that following the suggested plan is a best response in expectation, before the
recommended plan is actually revealed. An NE [22] is a CCE which can be written as a product of
players’ normal-form strategies x∗i ∈ Xi. In conclusion, an ε-CCE is a relaxation of a CCE in which
every player has an incentive to deviate less than or equal to ε (the same holds for ε-CE and ε-NE).

In the online convex optimization framework [32], each player i plays repeatedly against an unknown
environment by making a series of decisions x1

i , x
2
i , . . . , x

t
i. In the basic setting, the decision space

of player i is the whole normal-form strategy space Xi. At iteration t, after selecting xti, player i
observes a utility uti(x

t
i). The cumulative external regret of player i up to iteration T is defined as

RTi = maxx̂i∈Xi
∑T
t=1 u

t
i(x̂i)−

∑T
t=1 u

t
i(x

t
i). A regret minimizer is a function providing the next
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player i’s strategy xt+1
i on the basis of the past history of play and the observed utilities up to iteration

t. In an EFG, the regret can be defined at each infoset. After T iterations, the cumulative regret for
not having selected action a ∈ A(I) at I ∈ Ii (denoted by RTI (a)) is the cumulative difference in
utility that player i would have experienced by selecting a at I instead of following the behavioral
strategy πti at each iteration t up to T . Then, the regret for player i at infoset I ∈ Ii is defined as
RTI = maxa∈A(I)R

T
I (a). Regret matching (RM) [16] is the most widely adopted regret-minimizing

scheme when the decision space is Xi (e.g., in normal-form games). In the context of EFGs, RM is
usually applied locally at each infoset, where the player selects a distribution over available actions
proportionally to their positive regret. Playing according to RM at each iteration guarantees, on
iteration T , RTI ≤ ∆

√
|A(I)|/

√
T [11]. CFR [33] is an anytime algorithm to compute ε-NEs in

two-player, zero-sum EFGs. CFR minimizes the external regret RTi by employing RM locally at each
infoset. In two-player, zero-sum games, if both players have cumulative regrets such that 1

TR
T
i ≤ ε,

then their average behavioral strategies are a 2ε-NE [31].

3 CFR in multi-player general-sum sequential games
It is well known that, when players follow strategies recommended by a regret minimizer, the
empirical frequency of play approaches the set of CCEs [11]. Suppose that, at time t, the players play
a joint normal-form plan σt ∈ Σ drawn according to their current strategies. Then, the empirical
frequency of play after T iterations is defined as the joint probability distribution x̄T ∈ X such that
x̄T (σ) := |t≤T :σt=σ|

T for every σ ∈ Σ. However, vanilla CFR and its most popular variations [30, 7]
do not keep track of the empirical frequency of play, as they only keep track of the players’ average
behavioral strategies. This ensures that the strategies are compactly represented, but it is not sufficient
to recover a CCE in multi-player, general-sum games. Indeed, even in normal-form games, if the
players play according to some regret-minimizing strategies, then the product distribution x ∈ X
resulting from players’ (marginal) average strategies may not converge to a CCE. In order to see this,
consider the two-player game depicted on the left in Figure 1. At iteration t, let players’ strategies
xt1, x

t
2 be such that xt1(σL) = xt2(σL) = (t + 1) mod 2. Clearly, ut1(xt) = ut2(xt) = 1 for any t.

For both players, at iteration t, the regret of not having played σL is 0, while the regret of σR is −1 if
and only if t is even, otherwise it is 0. As a result, after T iterations, RT1 = RT2 = 0, and, thus, xt1
and xt2 minimize the cumulative external regret. Players’ average strategies converge to ( 1

2 ,
1
2 ) as

T →∞. However, x ∈ X s.t., ∀σ ∈ Σ, x(σ) = 1
4 is not a CCE of the game. This example employs

handpicked regret-minimizing strategies, but similar behaviors can be easily found when applying
common regret minimizers. As an illustrative case, Figure 1 shows, on the right, that, even with a
simple variation of the Shapley game the outer product of the average strategies x̄T1 ⊗ x̄T2 obtained
via RM does not converge to a CCE as T →∞.

σL σR
σL 1, 1 1, 0

σR 0, 1 1, 1
100 101 102 103 104 105

0

0.2

0.4

Iterations
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x̄T

x̄T
1 ⊗ x̄T

2

Figure 1: Left: Game where x̄T1 ⊗ x̄T2 does
not converge to a CCE. Right: Approxima-
tion attained by x̄T and x̄T1 ⊗ x̄T2 .

The previous examples suggest a simple vari-
ation of CFR guaranteeing approachability to
the set of CCEs even in multi-player, general-
sum EFGs, which we call CFR with sampling
(CFR-S). The key ingredient of CFR-S is a way
to keep track of the empirical frequency of play.
At each iteration t and for each player i, CFR-S
draws a normal-form plan σti according to the
current strategy πti and updates the regrets us-
ing utilities computed according to the sampled

plans σt−i (rather than current behavioral strategies). Joint normal-form plans σt := (σti , σ
t
−i) can be

easily stored to compute the empirical frequency of play. It is possible to show that the empirical
frequency of play x̄T obtained with CFR-S converges to a CCE almost surely, for T →∞. We show
that it is possible to achieve better perfomances via a smarter reconstruction technique that keeps
CFR deterministic, avoiding any sampling step.

4 CFR with joint distribution reconstruction (CFR-Jr)
We design a new method—called CFR with joint distribution reconstruction (CFR-Jr)—to enhance
CFR so as to approach the set of CCEs in multi-player, general-sum EFGs. Differently from the naive
CFR-S algorithm, CFR-Jr does not sample normal-form plans, thus avoiding any stochasticity. The
main idea behind CFR-Jr is to keep track of the average joint probability distribution x̄T ∈ X arising
from the regret-minimizing strategies built with CFR. Formally, x̄T = 1

T

∑T
t=1 x

t, where xt ∈ X
is the joint probability distribution defined as the product of the players’ normal-form strategies
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Game Tree size CFR-S CFR-Jr CG#infosets α = 0.05 α = 0.005 α = 0.0005 swAPX/swOPT α = 0.05 α = 0.005 α = 0.0005 swAPX/swOPT

K3-6 72 1.41s 9h15m > 24h - 1.03s 13.41s 11m21s - 3h47m
K3-7 84 4.22s 17h11m > 24h - 2.35s 14.33s 51m27s - 14h37m

K3-10 120 22.69s > 24h > 24h - 7.21s 72.78s 4h11m - > 24h

L3-4 1200 10m33s > 24h > 24h - 1m15s 6h10s > 24h - > 24h
L3-6 2664 2h5m > 24h > 24h - 2m40s 11h19m > 24h - > 24h
L3-8 4704 13h55m > 24h > 24h - 20m22s > 24h > 24h - > 24h

G3-4-A? 98508 1h33m > 24h > 24h 0.996 1h3m 4h13m > 24h 0.999 > 24h
G3-4-DA? 98508 1h13m > 24h > 24h 0.987 12m18s 1h50m > 24h 1.000 > 24h
G3-4-DH? 98508 47m33s 19h40m > 24h 0.886 16m38s 4h8m 15h27m 1.000 > 24h
G3-4-AL? 98508 32m34s 15h32m 17h30m 0.692 1h21m 5h2s > 24h 0.730 > 24h

Table 1: Run time and the social welfare of CFR-S, CFR-Jr (for various levels of accuracy α), and
CG. General-sum instances are marked with ?. Results of CFR-S are averaged over 50 runs.

at iteration t. At each t, CFR-Jr computes πti with CFR’s update rules, and then constructs, via
Algorithm 1, a strategy xti ∈ Xi which is realization equivalent (i.e., it induces the same probability
distribution on the terminal nodes) to πti . We do this efficiently by directly working on the game tree,
without resorting to the normal-form representation. Strategies xti are then employed to compute xt.

Algorithm 1 Reconstruct xi from πi
1: function NF-STRATEGY-RECONSTRUCTION(πi)
2: X← ∅ .X is a dictionary defining xi
3: ωz ← ρ

πi
z ∀z ∈ Z

4: while ω > 0 do
5: σ̄i ← arg maxσi∈Σi

minz∈Z(σi)
ωz

6: ω̄ ← minz∈Z(σ̄i)
ωi(z)

7: X← X ∪ (σ̄i, ω̄)
8: ω ← ω − ω̄ ρσ̄i

return xi built from the pairs in X

Algorithm 1 maintains a vector ω which is initialized
with the probabilities of reaching the terminal nodes by
playing πi (Line 3), and it works by iteratively assign-
ing probability to normal-form plans so as to induce
the same distribution of ω over Z. At each iteration,
the algorithm must pick σ̄i ∈ Σi which maximizes the
minimum (remaining) probability ωz over z ∈ Z(σ̄i)
(Line 5). Then, the probabilities ωz for z ∈ Z(σ̄i) are
decreased by the minimum (remaining) probability ω̄

corresponding to σ̄i, and σ̄i is assigned probability ω̄ in xi. The algorithm terminates when the vector
ω is zeroed, returning a normal-form strategy xi realization equivalent to πi. It is possible to show
that Algorithm 1 outputs a normal-form strategy xi ∈ Xi realization equivalent to a given behavioral
strategy πi, and it runs in time O(|Z|2). Moreover, xi has support size at most |Z|. Finally, it is
possible to show that, if 1

TR
T
i ≤ ε for each player i ∈ P , then x̄T obtained with CFR-Jr is an ε-CCE.

5 Experimental evaluation and discussion
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Figure 2: Convergence rate (left) and social welfare (right).

We experimentally evaluate CFR-Jr,
comparing its performance with that
of CFR-S, CFR, and the state-of-the-
art algorithm for computing optimal
CCEs (denoted by CG) [10]. A di-
rect application of RM on the nor-
mal form is not feasible, as |Σ| >
1020 even for the smallest instances.
We conduct experiments on paramet-
ric instances of 3-player Kuhn poker
games [19], 2/3-player Leduc hold’em
poker games [28], and 3-player Goofspiel games [25]. Each instance is identified by parameters
p and r, which denote, respectively, the number of players and the number of ranks in the deck of
cards. For example, a 3-player Kuhn game with rank 4 is denoted by Kuhn3-4, or K3-4. We use
different tie-breaking rules for the Goofspiel instances. We evaluate the run time required by the
algorithms to find an approximate CCE. The results are provided in Table 1, which reports the run
time needed by CFR-S, CFR-Jr to achieve solutions with different levels of accuracy, and the time
needed by CG for reaching an equilibrium. The accuracy α of the ε-CCEs reached is defined as
α = ε

∆ . CFR-Jr consistently outperforms both CFR-S and CG, being orders of magnitude faster.
Figure 2, on the left, shows the performance of CFR-Jr, CFR-S (mean plus/minus standard deviation),
and CFR over G2-4-DA in terms of ε/∆ approximation. CFR performs dramatically worse than
CFR-S and CFR-Jr. Table 1 shows, for the general-sum games, the social welfare approximation
ratio between the social welfare of the solutions returned by the algorithms (swAPX) and the optimal
social welfare (swOPT). The social welfare guaranteed by CFR-Jr is always nearly optimal, which
makes it a good heuristic to compute optimal CCEs. Reaching a socially good equilibrium is crucial,
in practice, to make correlation credible. Figure 2, on the right, shows the performance of CFR-Jr,
CFR-S (mean plus/minus standard deviation), and CFR over G2-4-DA in terms of social welfare
approximation ratio. Also in this case, CFR performs worse than the other two algorithms.
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