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Abstract

Motivated by applications in Game Theory, Optimization, and Generative Adversar-
ial Networks, recent work of Daskalakis et al [Daskalakis et al., ICLR, 2018] and
follow-up work of Liang and Stokes [Liang and Stokes, 2018] have established that
a variant of the widely used Gradient Descent/Ascent procedure, called “Optimistic
Gradient Descent/Ascent (OGDA)”, exhibits last-iterate convergence to saddle
points in unconstrained convex-concave min-max optimization problems. We show
that the same holds true in the more general problem of constrained min-max opti-
mization under a variant of the no-regret Multiplicative-Weights-Update method
called “Optimistic Multiplicative-Weights Update (OMWU)”. This answers an
open question of Syrgkanis et al [Syrgkanis et al., NIPS, 2015].
The proof of our result requires fundamentally different techniques from those
that exist in no-regret learning literature and the aforementioned papers. We
show that OMWU monotonically improves the Kullback-Leibler divergence of the
current iterate to the (appropriately normalized) min-max solution until it enters
a neighborhood of the solution. Inside that neighborhood we show that OMWU
becomes a contracting map converging to the exact solution. We believe that
our techniques will be useful in the analysis of the last iterate of other learning
algorithms.1

1 Introduction

A central problem in Game Theory and Optimization is computing a pair of probability vectors (x,y),
solving

min
y∈∆m

max
x∈∆n

x>Ay, (1)

where ∆n ⊂ Rn and ∆m ⊂ Rm are probability simplices, and A is a n×m matrix. Von Neumann’s
celebrated minimax theorem informs us that

min
y∈∆m

max
x∈∆n

x>Ay = max
x∈∆n

min
y∈∆m

x>Ay, (2)

and that all solutions to the LHS are solutions to the RHS, and vice versa. This result was a founding
stone in the development of Game Theory. Indeed, interpreting x>Ay as the payment of the “min
player” to the “max player” when the former selects a distribution y over columns and the latter
selects a distribution x over rows of matrix A, a solution to (1) constitutes an equilibrium of the

1The work has already been published in Innovations for Theoretical Computer Science (ITCS) 2019. The
full version of this paper can be found in https://arxiv.org/abs/1807.04252
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game defined by matrix A, called a “minimax equilibrium”, a pair of randomized strategies such that
neither player can improve their payoff by unilaterally changing their distribution.

Besides their fundamental value for Game Theory, it is known that (1) and (2) are also intimately
related to Linear Programming. It was shown by von Neumann that (2) follows from strong linear
programming duality. Moreover, it was suggested by Dantzig [7] and recently proven by Adler [1]
that any linear program can be solved by solving some min-max problem of the form (1). In particular,
min-max problems of form (1) are exactly as expressive as min-max problems of the following form,
which capture any linear program (by Lagrangifying the constraints):

min
y≥0

max
x≥0

(
x>Ay + b>x + c>y

)
. (3)

Soon after the minimax theorem was proven and its connection to linear programming was forged,
researchers proposed dynamics for solving min-max optimization problems by having the min
and max players of (1) run a simple learning procedure in tandem. An early method, proposed by
Brown [4] and analyzed by Robinson [15], was fictitious play. Soon after, Blackwell’s approachability
theorem [3] propelled the field of online learning, which lead to the discovery of several learning
algorithms converging to minimax equilibrium at faster rates, while also being robust to adversarial
environments, situations where one of the players of the game deviates from the prescribed dynamics;
see e.g. [5]. These learning methods, called “no-regret”, include the celebrated multiplicative-
weights-update method, follow-the-regularized-leader, and follow-the-perturbed-leader. Compared
to centralized linear programming procedures the advantage of these methods is the simplicity of
executing their steps, and their robustness to adversarial environments, as we just discussed.

Last vs Average Iterate Convergence. Despite the extensive literature on no-regret learning, an
unsatisfactory feature of known results is that min-max equilibrium is shown to be attained only
in an average sense. To be precise, if (xt,yt) is the trajectory of a no-regret learning method, it is
usually shown that the average 1

t

∑
τ≤t x

τ>Ayτ converges to the optimal value of (1), as t→∞.
Moreover, if the solution to (1) is unique, then 1

t

∑
τ≤t(x

τ ,yτ ) converges to the optimal solution.
Unfortunately that does not mean that the last iterate (xt,yt) converges to an optimal solution, and
indeed it commonly diverges or enters a limit cycle. Furthermore, in the optimization literature,
Nesterov [12] provides a method that can give pointwise convergence (i.e., convergence of the last
iterate) to problem (1)2, however his algorithm is not a no-regret learning algorithm. Recent work
by Daskalakis et al [8] and Liang and Stokes [10] studies whether last iterate convergence can be
established for no-regret learning methods in the simple unconstrained min-max problem of the form:

min
y∈Rm

max
x∈Rn

(
x>Ay + b>x + c>y

)
. (4)

For this problem, it is known that Gradient Descent/Ascent (GDA) is a no-regret learning procedure,
corresponding to follow-the-regularized leader (FTRL) with `22-regularization. As such, the average
trajectory traveled by GDA converges to a min-max solution, in the afore-described sense. On the
other hand, it is also known that GDA may diverge from the min-max solution, even in trivial cases
such as A = I, n = m = 1, b = c = 0. Interestingly, [8, 10] show that a variant of GDA, called
“Optimistic Gradient Descent/Ascent (OGDA),3 exhibits last iterate convergence. Inspired by their
theoretical result for the performance of OGDA in (4), Daskalakis et al. [8] even propose the use of
OGDA for training Generative Adversarial Networks (GANs) [9]. Moreover, Syrgkanis et al. [16]
provide numerical experiments which indicate that the trajectories of Optimistic Hedge (variant of
Hedge in the same way OGDA is a variant of GDA) stabilize (i.e., converge pointwise) as opposed to
(classic) Hedge and they posed the question whether Optimistic Hedge actually converges pointwise.

Motivated by the afore-described lines of work, and the importance of last iterate convergence for
Game Theory and the modern applications of GDA-style methods in Optimization, our goal in this
work is to generalize the results of [8, 10] to the general min-max problem (3), or equivalently (1);
indeed, we will focus on the latter, but our algorithms are readily applicable to the former as the

2Nesterov showed that by optimizing fµ(x) := µ ln( 1
m

∑m
j=1 e

− 1
µ
(Ax)j ), gν(x) :=

ν ln( 1
n

∑n
j=1 e

1
ν
(A>y)j ) for µ = Θ( ε

logm
), ν = Θ( ε

logn
) yields an O(ε) approximation to the prob-

lem problem (1).
3OGDA is tantamount to Optimistic FTRL with `22-regularization, in the same way that GDA is tantamount

to FTRL with `22-regularization; see e.g. [14]. OGDA essentially boils down to GDA with negative momentum.
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two problems are equivalent [1]. With the constraint that (x,y) should remain in ∆n ×∆m, GDA
and OGDA are not applicable. Indeed, the natural GDA-style method for min-max problems in this
case is the celebrated Multiplicative-Weights-Update (MWU) method, which is tantamount to FTRL
with entropy-regularization. Unsurprisingly, in the same way that GDA suffers in the unconstrained
problem (4), MWU exhibits cycling in the constrained problem (1) (a recent work is [2] and was also
shown empirically in [16]). So it is natural for us to study instead its optimistic variant, “Optimistic
Multiplicative-Weights-Update (OMWU),” (called Optimistic Hedge in [16]) which corresponds to
Optimistic FTRL with entropy-regularization, the equations of which are given in Section 2.2. Our
main result is the following (restated as Theorem 2.2 after Section 2.2) and answers an open question
asked in [16] as applicable to two player zero sum games:

Theorem 1.1 (Last-Iterate Convergence of OMWU, informal). Whenever (1) has a unique optimal
solution (x∗,y∗), OMWU with a small enough learning rate and initialized at the pair of uniform
distributions ( 1

n1,
1
m1) exhibits last-iterate convergence to the optimal solution. That is, if (xt,yt)

are the vectors maintained by OMWU at step t, then limt→∞(xt,yt) = (x∗,y∗).

Remark 1.2. We note that the assumption about uniqueness of the optimal solution for problem (1)
is generic in the following sense: Within the set of all zero-sum games, the set of zero-sum games
with non-unique equilibrium has Lebesgue measure zero [2, 6]. This implies that if A’s entries are
sampled independently from some continuous distribution, then with probability one the min-max
problem (1) will have a unique solution.

Our paper provides two important messages:

• It strengthens the intuition that optimism helps the trajectories of learning dynamics stabilize
(e.g., Optimistic MWU vs MWU or Optimistic GDA vs GDA; as the papers of Syrgkanis et
al [16] and Daskalakis et al [8] also do).

• The techniques we use (typically appear in dynamical systems literature) to prove conver-
gence for the last iterate, are fundamentally different from those commonly used to prove
convergence of the time average of a learning algorithm.

2 Preliminaries

2.1 Definitions and facts

Dynamical Systems. A recurrence relation of the form xt+1 = w(xt) is a discrete time dynamical
system, with update rule w : S → S where S = ∆n ×∆m ×∆n ×∆m for our purposes. The point
z is called a fixed point or equilibrium of w if w(z) = z. We will be interested in the following well
known fact that will be used in our proofs.

2.2 OMWU Method

Our main contribution is that the last iterate of OMWU converges to the optimal solution. The
OMWU dynamics is defined as follows (t ≥ 1):

xt+1
i = xti

e2η(Ayt)i−η(Ayt−1)i∑n
j=1 x

t
je

2η(Ayt)j−η(Ayt−1)j
for all i ∈ [n],

yt+1
i = yti

e−2η(A>xt)i+η(A
>xt−1)i∑m

j=1 y
t
je
−2η(A>xt)j+η(A

>xt−1)j
for all i ∈ [m].

(5)

Points (x1,y1), (x0,y0) are the initial conditions and are given as input. We call 0 < η < 1 the
stepsize of the dynamics. It is more convenient to interpret OMWU dynamics as mapping a quadruple
to quadruple ((xt,yt,xt−1,yt−1)→ (xt+1,yt+1,xt,yt)).

Remark 2.1. Let (x∗,y∗) be the optimal solution. We see that (x∗,y∗,x∗,y∗) is a fixed point of
the mapping. Furthermore, ∆n ×∆m ×∆n ×∆m is invariant under OMWU dynamics. For t ≥ 1,
if xti = 0 then xi remains zero for all times greater than t, and if it is positive, it remains positive
(both numerator and denominator are positive) 4. In words, at all times the OMWU satisfies the non-
negativity constraints and the renormalization factor (denominator) makes both x,y’s coordinates

4Same holds for vector y.
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sum up to one. A last observation is that every fixed point of OMWU dynamics (mapping a quadruple
to quadruple) has the form (x,y,x,y) (two same copies). One important task is to express OMWU
dynamics as a dynamical system.

Statement of our result. We finish by stating formally the main result.
Theorem 2.2 (OMWU converges). Let A be a n×m matrix and assume that

min
y∈∆m

max
x∈∆n

x>Ay

has a unique solution (x∗,y∗). It holds that for η sufficiently small (depends on n,m,A), starting
from the uniform distribution, i.e., (x1,y1) = (x0,y0) = ( 1

n1,
1
m1), it holds

lim
t→∞

(xt,yt) = (x∗,y∗),

under OMWU dynamics. The stepsize η is constant, i.e., does not scale with time5.

We need to note that it is not clear from our theorem how small η is and its dependence on the size
of A. Nevertheless, our convergence result holds for constant stepsizes as opposed to the classic
no-regret learning literature where η scales like 1√

T
after T iterations. Another result we know of

this flavor is about MWU algorithm on congestion games [13].

Remarks about the contribution. We provide some remarks as asked from the organizers.

• OMWU is a no-regret online algorithm, so at every iteration, each player has information
about the costs of the past before the update. Extra gradient methods [11] do not follow
exactly at this framework because it asks information about costs twice in every update.

• This abstract does not include any proofs. The full version including the proofs can be found
in https://arxiv.org/abs/1807.04252.

• We can prove rates of convergence, in particular we can show that after T iterations, the
method reaches O(1/T 1/9) `1 from Nash equilibrium. The problem is that there might be
exponential dependence on the size of the payoff matrix. The average regret for OMWU
scales at 1/T and this is known from Rakhlin and Sridharan [14].
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