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Abstract

IRGAN is an information retrieval (IR) modeling approach that uses a theoretical
minimax game between a generative and a discriminative model to iteratively
optimize both of them, hence unifying the generative and discriminative approaches.
Despite significant performance improvements in several information retrieval
tasks, IRGAN training is an unstable process, and the solution varies largely
with the random parameter initialization. In this work, we present an improved
training objective based on proximal policy optimization objective and Gumbel-
Softmax based sampling for the generator. We also propose a modified training
algorithm which takes a single gradient update on both the generator as well as
discriminator for each iteration step. We present empirical evidence of the improved
convergence of the proposed model over the original IRGAN and a comparison on
three different IR tasks on benchmark datasets is also discussed, emphasizing the
proposed model’s superior performance.

1 Introduction

Approaches in information retrieval fall into two broad categories - Generative models, which attempt
to model the underlying stochastic generative process between the documents and information need
(in form of a query) q → d, and, Discriminative models, that predict a relevance score or ranking for
a given document-query pair q + d→ r. IRGAN [Wang et al., 2017] is model which combines the
generative and discriminative approaches in information retrieval with a minimax game, in the broad
Generative Adversarial Network [Goodfellow et al., 2014] framework. The model achieved state of
the art performance on several information retrieval tasks.

Our work improves upon IRGAN by reformulating the optimization objective of the generator based
on proximal policy optimization [Schulman et al., 2017] and incorporating the Gumbel-Softmax
reparamterization trick[Jang et al., 2016] for sampling from the generator. This is coupled with a
modified training algorithm for iterative optimization of both the models. We also provide empirical
evidence that our proposed approach converges to closer approximates of the Nash Equilibrium for
the minimax game, demonstrated by improved performance in several key information retrieval tasks.

2 Improved Convergence in IRGAN

The general information retrieval problem can be described as follows: Given a query set {qi},
i ∈ 1 . . . N , where a set of relevant labelled documents exist for a given query qi (which is a
representation of the actual information need), and a set of documents {dj}, j ∈ 1 . . .M , the goal
is to find the subset of relevant documents for each query in the query set [Manning et al., 2008].
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Queries can be in the form of search keywords, questions, or even user profiles, while, the documents
can be text documents, web links, or answers. The true relevance distribution can be denoted as a
conditional probability distribution ptrue(d|q, r) which represents the relevance of a document d for
a given query q and ranking scheme r.

Wang et al. [2017] proposed the IRGAN model which consists of a generative model pθ(d|q, r),
which learns to approximate the true relevance distribution ptrue(d|q, r) and a discriminative model
fφ(q, d) which learns to approximate the ranking score for a given query-document pair. During
training, we sample documents from the generator which the discriminator learns to distinguish from
the samples from the true relevance distribution. Here the generative model acts as an adversary for
the discriminative model and vice versa, resulting in a zero-sum minimax game between the two
models. We describe our proposed model in the following sections. To focus on the proposed changes
we limit the discussion to pointwise models, however the arguments can be extended to the pairwise
case.

Discriminative Model The objective of the discriminator is to maximize the log-likelihood of
correctly classifying the documents sampled from the true relevance distribution and the documents
sampled from the generator’s learned relevant distribution. The discriminator learns a ranking function
fφ(q, d) to score a given query document pair. This score indicates the relevance of a document for
the given query. The output of the discriminator essentially indicates the probability of the given
document being sampled from the true relevance distribution given the query. The output of the
discriminator can be computed as the sigmoid of the scoring function as follows:

D(d|q) = exp(fφ(q, d))

1 + exp(fφ(q, d))
(1)

The output of the discriminator D is expected to be 1 for samples from the true relevance distribution
and 0 for samples from the estimated distribution. At equilibrium, however, the generator ideally
has estimated the exact true relevance distribution, and thus the discriminator should output 1

2 for all
inputs (q, d). The optimal parameters for the discriminator scoring function can be represented as:

φ∗ = argmax
φ

N∑
i

(Ed∼ptrue(d|q,r)[log(σ(fφ(d, qi)))] +Ed∼pθ(d|qi,r)[log(1− σ(fφ(d, qi)))]) (2)

Generative Model The goal of the generator is to estimate the true relevance distribution, using
which it can generate samples which are misclassified by the discriminator. That is, the generator
acts as an adversary to the discriminator. Similar to the discriminator, the generator also learns a
scoring function, gθ(q, d) which reflects the chance of d being selected for the given q. We define the
generative model from the scoring function using the gumbel-softmax reparametrization trick [Jang
et al., 2016], as shown in Eq. (3), where, v1 . . . vM are i.i.d samples from Gumbel(0, 1), and τ is the
softmax temperature.

pθ(di|q, r) =
exp((log gθ(q, di) + vi)/τ)∑M
k=1 exp((log gθ(q, dk) + vk)/τ)

(3)

The problem of training this generative model can be formulated as a single-step reinforcement
learning problem. The generator can be modeled as an agent, whose discrete action space is defined
by the documents in the collection, and state space is defined by the queries. The goal is to maximize
the reward, which is governed by the output of the discriminator. Wang et al. [2017] use a basic
policy gradient formulation and use the REINFORCE algorithm [Williams, 1992] to train this agent.

We propose using Proximal Policy Optimization [Schulman et al., 2017] for training this agent. PPO
provides significant improvements over REINFORCE in a number of reinforcement learning tasks.
We use PPO with clipped objective function which provides better performance with a relatively
straightforward implementation. For incorporating PPO, we define an additional scoring function
gθ′(q, d) whose parameters θ′ are set to θ after every k iterations. This additional scoring function can
then define a target distribution pθ′(d|q, r), which functions as a target actor in PPO. The objective
function JG for the generative model can thus be defined as follows:

JG(qi) = Ed∼pθ′ (d|qi,r)[min(ri(θ)A
pθ′ (d|q,r)
i , clip(ri(θ), 1 + ε, 1− ε)Apθ′ (d|q,r)i )] (4)
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ri(θ) =
pθ(d|q, r)
pθ′(d|q, r)

(5)

A
pθ(d|q,d)
i = log(1 + exp(fφ(q, d)))−Ed∼pd|q,r [log(1 + exp(fφ(q, d)))] (6)

θ∗ = argmax
θ

N∑
i

JG(qi) (7)

The training procedure proposed by Wang et al. [2017] involves some pre-training of the generative
and discriminative models on the training data. This is followed by an iterative process consisting of
several epochs of training of the generator followed by several epochs of training of the discriminator.
We discover that this training procedure is highly unstable and prone to getting stuck at the local
optimum. We suspect that this might be due to each model being trained against a stationary
adversary for several epochs. The procedure is also highly sensitive to the choice of the random seed
for initialization of the parameters.

We propose a modified training procedure for training IRGAN (Algorithm 1). We proposed training
both models simultaneously within the same epoch. That is, for a single training batch, we update
the model parameters for the generator and discriminator within the same iteration. This ensures
that model the models have knowledge of the same data at any step, ensuring that they are equally
matched. As discussed in the next section, this procedure drastically improves the training stability
and also results in faster convergence.

Algorithm 1: Proposed training algorithm for IRGAN
Result: Optimal parameters φ and θ
Randomly initialize parameters θ and φ;
Set θ′ = θ;
Prepare training data S;
repeat

Sample K documents for each query q from generator pθ(d|q, r);
Update θ with the new PPO formulation;
Generate negative samples from pθ(d|q, r) for discriminator fφ(q, d);
Combine generated samples with positive samples from S;
Update φ with on the constructed batch;
if iteration % k = 0 then

Set θ′ = θ;
end

until convergence;

Given the true relevance distribution, it can also be proved that there exists a Nash equilibrium for
this minimax game [Goodfellow et al., 2014]. At equilibrium, the generative model estimates the true
relevance distribution (pθ(d|q, r) = ptrue(d|q, r)) and the discriminator is unable to distinguish the
generated samples from the true samples(D(d|q) = 1

2 ). In most scenarios however, we do not have
the true relevance distribution. We find that our proposed method the generative model learns a closer
estimate of the true relevance distribution, leading to improved discriminator performance due to a
stronger adversary. This essentially results in the underlying minimax game converging to a closer
approximate of the Nash Equilibrium. In the following section, we provide empirical evidence for
the same.

3 Experiments and Results

We reproduce the results presented by Wang et al. [2017] in PyTorch [Paszke et al., 2017] and then
modify the implementation according to the proposed model and run the same experiments on the
proposed model with some ablation studies on three information retrieval tasks - Web Search, Item
Recommendation and Question-Answering. All the scores presented are the mean values for 5
separate runs with different random seeds.

Web Search We use the MQ2008-semi (Million Query track) collection in LETOR 4.0 [Qin et al.,
2010] for our experiments in Web Search. Here, the input query is a feature vector containing features
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extracted from anonymized web search queries and the task is to predict the id of the relevant links.
We use the same experimental setup as Wang et al. [2017].

Table 1: Experimental results for Web Search task (MQ2008-Semi Collection)

p@3 p@5 p@10 ndcg@3 ndcg@5 ndcg@10

IRGAN 0.1722 0.1653 0.1257 0.2065 0.2225 0.2483
IRGAN-PPO 0.1765 0.1678 0.1302 0.2096 0.2267 0.2512
IRGAN-SGS 0.1758 0.1692 0.1300 0.2100 0.2256 0.2520
IRGAN-SGS+PPO 0.1860 0.1781 0.1384 0.2187 0.2396 0.2619

Item Recommendation For the item recommendation task, we run experiments on the MovieLens-
100k dataset [Harper and Konstan, 2016]. Here, the query is in the form of a user profile and the task
is to recommend relevant movies for the given user. The experimental setup remains identical to
Wang et al. [2017].

Table 2: Experimental Results for Item Recommendation task (MovieLens-100k collection).

p@3 p@5 p@10 ndcg@3 ndcg@5 ndcg@10

IRGAN 0.4072 0.3750 0.3140 0.4222 0.4009 0.3723
IRGAN-PPO 0.4131 0.3802 0.3198 0.4301 0.4075 0.3892
IRGAN-SGS 0.4159 0.3798 0.3226 0.4294 0.4131 0.3851
IRGAN-SGS+PPO 0.4227 0.3910 0.3378 0.4486 0.4253 0.4026

Question Answering We consider a specific question answering problem, where, the question is
the query and the task is to predict the relevant answers from the given collection. The InsuranceQA
dataset [Feng et al., 2015] was used for experiments and the experimental setup remains identical to
Wang et al. [2017]. We use the pairwise IRGAN formulation in this case.

Table 3: Experimental results for Question-answering task (InsuranceQA collection).

p@1 (Test 1) p@1 (Test 2)

IRGAN 0.6444 0.6111
IRGAN-PPO 0.6671 0.6397
IRGAN-SGS 0.6733 0.6432
IRGAN-SGS+PPO 0.7165 0.6784

Table 1, Table 2, Table 3 summarise the results of our experiment on the proposed model. IRGAN-
PPO consists of only the updated generator objective, IRGAN-SGS incorporates only the improved
training procedure, while IRGAN-SGS+PPO utilizes both the proposed modifications. These models
are used to evaluate each proposed modification independently. We observe that the precision score
of the models with individual and combined modification is 6 − 11% higher than IRGAN, which
indicates that the model learns a better approximation of the true relevance distribution. This claim is
also supported by the increased Normalized Discounted Cumulative Gain score, which also indicates
the improved performance in graded relevance. The improved graded relevance also indicates the
improved of the scoring functions.

4 Conclusion

In this paper, we presented several improvements to IRGAN in the form of an improved optimization
objective for the generator, improved sampling for the generative model and modified training
procedure involving single step updating both models. We also present empirical evidence of
improved convergence and performance on three different information retrieval tasks. Future work can
focus on a more comprehensive theoretical analysis of the effects of the new proposed modifications
to the equilibrium of the minimax game.
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