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Abstract

Games generalize the single-objective optimization paradigm by introducing differ-
ent objective functions for different players. Differentiable games often proceed
by simultaneous or alternating gradient updates. In machine learning, games are
gaining new importance through formulations like generative adversarial networks
(GANs) and actor-critic systems. However, compared to single-objective opti-
mization, game dynamics are more complex and less understood. In this paper,
we analyze gradient-based methods with momentum on simple games. Next, we
show empirically that alternating gradient updates with a negative momentum term
achieves convergence on the notoriously difficult to train saturating GANs.

1 Introduction and Background

Recent advances in machine learning are largely driven by the success of gradient-based optimization
methods for the training process. Games generalize the standard optimization framework by intro-
ducing different objective functions for different optimizing agents, known as players. For example
generative adversarial networks (GANs) [Goodfellow et al., 2014] use a two-player game formulation.
We are commonly interested in finding a local Nash equilibrium: a set of parameters from which
no player can (locally and unilaterally) improve its objective function. Games with differentiable
objectives often proceed by simultaneous or alternating gradient steps on the players’ objectives.

In this work we are interested in studying the effect of two particular algorithmic choices: (i) the
choice between simultaneous and alternating updates, and (ii) the choice of step size and momentum
value. We summarize our main contributions as follows: We show that the alternating gradient method
with negative momentum is the only setting within our study parameters (Tab. 1) that converges on a
bilinear smooth game. Using a zero or positive momentum value, or doing simultaneous updates in
such games fails to converge. We also show in §3 that, for general dynamics, when the eigenvalues of
the Jacobian have a large imaginary part, negative momentum can improve the local convergence
properties of the gradient method. Finally, we confirm the benefits of negative momentum for training
GANs with the notoriously ill-behaved saturating loss on CIFAR10 and FASHION-MNIST datasets.

Related work A lot of work has been done in the context of understanding momentum and its
variants but all are restricted to minimization problems [Polyak, 1964, Qian, 1999, Nesterov, 2013,
Sutskever et al., 2013]. Balduzzi et al. [2018] develop new methods to understand the dynamics
of general games and propose Symplectic Gradient Adjustment which helps in discovering stable
fixed points in general games. Mescheder et al. [2017] show how presence of eigenvalues with zero
real-part and large imaginary-part result in oscillatory behavior. Nagarajan and Kolter [2017] analyze
the local stability of GANs and show that during training of a GAN, the eigenvalues of the Jacobian
of the vector field are pushed away from one along the real axis.
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Figure 1: Effect of Gradient Methods on an unconstrained bilinear example: minθ maxϕ θ
>Aϕ .

Game theory formulation of GANs From a game theory point of view, GAN training is a differ-
entiable two-player game: the discriminator Dϕ aims at minimizing its cost function L(ϕ) and the
generator Gθ aims at minimizing its own cost function L(θ),

θ∗ ∈ arg min
θ∈θ

L(θ)(θ,ϕ∗) and ϕ∗ ∈ arg min
ϕ∈ϕ

L(ϕ)(θ∗,ϕ) . (1)

State (ϕ∗,θ∗). In order to analyze the dynamics of gradient-based methods near a Nash Equilibrium,
we look at the gradient vector field and its associated Jacobian ∇v(ϕ,θ),

v(ϕ,θ) :=

[
∇ϕL(ϕ)(ϕ,θ)
∇θL(θ)(ϕ,θ)

]
∇v(ϕ,θ) :=

[
∇2
ϕL(ϕ)(ϕ,θ) ∇ϕ∇θL(ϕ)(ϕ,θ)

∇ϕ∇θL(θ)(ϕ,θ)T ∇2
θL(θ)(ϕ,θ)

]
. (2)

Simultaneous Gradient Method. Let us consider the dynamics of the Simultaneous Gradient
Method. It is defined as the repeated application of the following operator,

Fη(ϕ,θ) :=
[
ϕ θ

]> − η v(ϕ,θ) , (ϕ,θ) ∈ Rm , (3)

where η is the learning rate. Now, for brevity we write the joint parameters ω := (ϕ,θ) ∈ Rm.
For t ∈ N, let ωt = (ϕt,θt) be the tth point of the sequence computed by the gradient method. If
the gradient method converges, its limit point ω∗ = (ϕ∗,θ∗) is a fixed point of Fη. In addition, if
∇v(ω∗) is positive-definite, then ω∗ is a local Nash equilibrium.

2 Tuning the Step Size

Under certain conditions, linear convergence is guaranteed in a neighborhood around a fixed point.
Theorem 1 (Prop. 4.4.1 Bertsekas [1999]). If the spectral radius ρmax := ρ(∇Fη(ω∗)) < 1, then,
for ω0 in a neighborhood of ω∗, the distance of ωt to the stationary point ω∗ converges at a linear
rate of O

(
(ρmax + ε)t

)
, ∀ε > 0.

If the eigenvalues of ∇v(ω∗) all have a positive real-part, then for small enough η, the eigenvalues
of∇Fη(ω∗) are inside a convergence circle of radius ρmax < 1, as illustrated in Fig. 2. Then Thm. 1
guarantees the existence of an optimal step-size ηbest which yields a non-trivial convergence rate
ρmax < 1. Thm. 2 gives analytic bounds on the optimal step size ηbest, and lower-bounds the best
convergence rate ρmax(ηbest) we can expect.
Theorem 2. If the eigenvalues of ∇v(ω∗) all have a positive real-part, then, the best step-size ηbest,
which minimizes the spectral radius ρmax(η) of∇Fη(ϕ∗,θ∗), is the solution of a (convex) quadratic
by parts problem, and satisfies,

max
1≤k≤m

sin(ψk)2 ≤ ρmax(ηbest)
2 ≤ 1−<(1/λ1)δ and <(1/λ1) ≤ ηbest ≤ 2<(1/λ1) , (4)

where δ := min1≤k≤m |λk|2(2<(1/λk)−<(1/λ1)) and (λk = rke
iψk)1≤k≤m = Sp(∇v(ϕ∗,θ∗))

are sorted such that 0 < <(1/λ1) ≤ · · · ≤ <(1/λm). Particularly, when ηbest = <(1/λ1) we are in
the case of the top plot of Fig.2 and ρmax(ηbest)

2 = sin(ψ1)2 .

When ∇v is positive-definite, the ηbest is achieved because of either one or several limiting eigenval-
ues, we illustrate and interpret these two cases in Fig. 2. In (4) we can see that if the Jacobian of v
has an almost purely imaginary eigenvalue then the convergence rate of the gradient method can be
arbitrarily close to 1. Our goal is to use momentum to wrangle game dynamics into convergence.
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Figure 2: Trajectories of 1− ηλi for growing step sizes, and the optimal step-size for λi ∈ Sp(∇v(φ∗,θ∗)).
The unit circle is drawn in black, and the red dashed circle has radius equal to the largest eigenvalue µmax,
which is directly related to the convergence rate. Therefore, smaller red circles mean better convergence rates.
Left: The red circle is limited by the tangent trajectory line 1− ηλ1, which means the best convergence rate is
limited only by the eigenvalue which will pass furthest from the origin as η grows, i.e., λ1 = arg min |<(λi)|

|λi|2
.

Right: The red circle is cut (not tangent) by the trajectories at points 1− ηλ1 and 1− ηλ3. The η is optimal
because any increase in η will push the eigenvalue λ1 out of the red circle, while any decrease in step-size will
retract the eigenvalue λ3 out of the red circle, which will lower the convergence rate in any case.

3 Negative Momentum

As shown in (4), the presence of eigenvalues with large imaginary parts can restrict us to using
small step sizes and lead to slow convergence rates. In order to improve convergence, we add
a negative momentum term into the update rule. The new momentum term leads to a modifica-
tion of the parameter update operator Fη(ω) of (3). It requires to augment the state ωt with
the previous iterate ωt−1 (similar to Zhang and Mitliagkas [2017]) to form a compound state
(ωt,ωt−1) := (ϕt,θt,ϕt−1,θt−1) ∈ R2m. The update rule (3) turns into the following,

Fη,β(ωt,ωt−1) = (ωt+1,ωt) where ωt+1 := ωt − ηv(ωt) + β(ωt − ωt−1) , (5)

in which β ∈ R is the momentum parameter. Therefore, the Jacobian of Fη,β has the following form,

∇Fη,β(ωt,ωt−1) =

[
In 0n
In 0n

]
− η

[
∇v(ωt) 0n

0n 0n

]
+ β

[
In −In
0n 0n

]
(6)

In the following theorem, we provide an explicit equation for the eigenvalues of the Jacobian of Fη,β .

Theorem 3. The eigenvalues of ∇Fη,β(ω∗) are

µ±(β, η, λ) := (1− ηλ+ β) 1±∆
1
2

2 , λ ∈ Sp(∇v(ω∗)) , (7)

where ∆ := 1− 4β
(1−ηλ+β)2 and ∆

1
2 is the complex square root of ∆ with positive real part3.

When β is small enough, ∆ is a complex number close to 1. Consequently, µ+ is close to the original
eigenvalue for gradient dynamics 1−ηλ, and µ−, the eigenvalue introduced by the state augmentation,
is close to 0. Since our goal is to minimize the largest magnitude of the eigenvalues of Fη,β computed
in Thm. 3, we want to understand the effect of β on these eigenvalues with potential large magnitude.
Let λ ∈ Sp(∇v(ω∗)), we define the squared magnitude ρλ,η(β) we want to optimize,

ρλ,η(β) := max
{
|µ+(β, η, λ)|2, |µ−(β, η, λ)|2

}
. (8)

We study the local behavior of ρλ,η for small values of β. The following theorem shows that a well
suited β decreases ρλ,η , which corresponds to faster convergence.

Theorem 4. For any λ ∈ Sp(∇v(ω∗)) s.t. <(λ) > 0,

ρ′λ,η(0) > 0⇔ η ∈ I(λ) :=
(
|λ|−=(λ)
|λ|<(λ) ,

|λ|+=(λ)
|λ|<(λ)

)
. (9)

Particularly, ρ′λ,<(1/λ)(0) = 2<(λ)<(1/λ) > 0 and |Arg(λ)| ≥ π
4 ⇒

(
<(1/λ), 2<(1/λ)

)
⊂ I(λ).

3 If ∆ is a negative real number we set ∆
1
2 := i

√
−∆
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Figure 6: Left: A grid search over discriminator’s momentum and learning rate for a DCGAN trained on
Fashion MNIST (Xiao et al., 2017) where every cell is a single generated sample of a specific configuration.
The sample with the best quality has been marked with red. Right: More generated samples from the best
configuration on the left.

7 Conclusion

In this paper, we study the effect of using negative values of momentum in a GAN setup. We show
for a class of adversarial games, using negative momentum can improve the convergence rate of
gradient-based methods by shifting the eigenvalues of the Jacobian appropriately into a smaller
convergence disk. We found that in simple yet intuitive examples, using negative momentum makes
convergence to the Nash Equilibrium easier. We noted that our intuitions on negative momentum
can generalize to saturating GANs on the mixture of Gaussian task along with other datasets such as
CIFAR-10 and fashion MNIST. Our experiments highly support the use of negative momentum with
saturating loss. Altogether, fully stabilizing learning in GANs requires a deep understanding of the
underlying highly non-linear dynamics. We believe our work is a step towards a better understanding
of these dynamics. We encourage deep learning researchers and practitioners to include negative
values of momentum in their hyper-parameter search.

We believe that our results explain a decreasing trend in momentum values reported in GAN literature
in the past few years. Some of the most successful papers use zero momentum Arjovsky et al. (2017);
Gulrajani et al. (2017) for architectures that would otherwise call for high momentum values in a
non-adversarial setting.
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Figure 3: Comparison between negative and positive momentum on GANs with saturating loss on CIFAR-10
(left) and on Fashion MNIST (right) using a residual network. For each dataset, a grid of different values of
momentum (β) and step sizes (η) is provided which describes the discriminator’s settings while a constant
momentum of 0.5 and step size of 10−4 is used for the generator. Each cell in CIFAR-10 (or Fashion MNIST)
grid contains a single configuration in which its color (or its content) indicates the inception score (or a single
sample) of the model. For CIFAR-10 experiments, yellow is higher while blue is the lower inception score.
Along each row, the best configuration is chosen and more samples from that configuration are presented on the
right side of each grid.

As we have seen previously in Fig. 2 and Thm. 2, there are only few eigenvalues which slow down
the convergence. Thm. 4 is a local result showing that a small negative momentum can improve
the magnitude of the limiting eigenvalues in the following cases: when there is only one limiting
eigenvalue λ1 (since in that case the optimal step-size is ηbest = <(1/λ1) ∈ I(λ1)) or when there
are several limiting eigenvalues λ1, . . . , λk and the intersection I(λ1)∩ . . .∩ I(λk) is not empty. We
point out that we do not provide any guarantees on whether this intersection is empty or not but note
that if the absolute value of the argument of λ1 is larger than π/4 then by (4), our theorem provides
that the optimal step-size ηbest belongs to I(λ1). Nevertheless, we numerically optimized (8) with
respect to β and η and found that for any non-imaginary fixed eigenvalue λ, the optimal β is negative
and the associated optimal step size is larger than <(1/λ).

4 Experiments and Discussion

We use negative momentum in a GAN setup on CIFAR-10 [Krizhevsky and Hinton, 2009] and
Fashion-MNIST [Xiao et al., 2017] with saturating loss and alternating steps. Fig. 3 shows the results.
We use residual networks for both the generator and the discriminator with no batch-normalization.
Each residual block is made of two 3 × 3 convolution layers with ReLU activation function. Up-
sampling and down-sampling layers are respectively used in the generator and discriminator. We
observe that using a negative value generally result in samples with higher quality and inception scores.
We use negative momentum only on the discriminator because intuitively, negative momentum slows
down the learning process of the discriminator and allows for better gradient flow to the generator.

5 Conclusion

We theoretically show that alternating updates with negative momentum is the only method within
our study parameters (Tab.1) that converges in bilinear smooth games. Next, we study the effect of
using negative values of momentum in a GAN setup both theoretically and experimentally and show
that negative momentum can improve the convergence rate of gradient-based methods by shifting
the eigenvalues of the Jacobian appropriately into a smaller convergence disk. We test out theory on
CIFAR-10 and fashion MNIST datasets. We believe that our results explain a decreasing trend in
momentum values reported in GAN literature in the past few years. Some of the most successful
papers use zero momentum [Arjovsky et al., 2017, Gulrajani et al., 2017] for architectures that would
otherwise call for high momentum values in a non-adversarial setting.
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