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Abstract

Modern deep learning approaches for image segmentation without semantics often
utilize pixelwise loss functions for boundary prediction, especially when dense
groundtruth is available. However, these approaches may not be sensitive to
structural similarity (e.g. tiny holes), that can severely affect postprocessing. This
work explores the possibility to augment the training with a GAN loss function
and in conjunction with the Mutex Watershed graph clustering algorithm.We show
that this method and additional auxiliary task losses improve the quality of the
Adjusted Rand Score over the score reported in [1]. Additionally, we present an
ablation study to show that when the images in the target domain are constrained
to be discrete, adding an auxiliary task with smooth target images significantly
improves the training performance/stability. We also use the discriminator to train
on unlabeled images which further improves our results.

1 Introduction

The Mutex Watershed is a greedy graph partitioning algorithm which when presented with the
attractive and repulsive affinities between pixels, efficiently finds an image segmentation. In its
current formulation it is not differentiable, and hence a learnable loss function cannot be defined for
it. Using a point-to-point loss function between the output of the neural network and the ground
truth affinity maps is a fair approximation but has its shortcomings which are illustrated in Figure 1.
Figure 1b shows a case when the network output has a high point-to-point similarity with the ground
truth, but a small hole in the boundary can lead to the merger of two instances. We ideally want this
result to be highly penalized, but the point-to-point loss levies only a minimal penalty in this case.
Figure 1c shows the case when the network output is slightly translated from the ground truth. This
would result in a reasonable quality segmentation, and we expect the loss function to penalize this
minimally, but the point-to-point loss function imposes a massive loss now. These shortcomings of
the supervised point-to-point loss indicate that the quality of the affinities from the neural network
can be improved by improving the loss function, which motivates us to supplement this supervised
loss with a GAN loss.

2 Proposed Approach

We model this as an image translation problem from the image space to the affinity map space and
use a conditional GAN [2] based approach for this. The generator is trained to learn a deterministic
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(a) A sample image taken from
the BSDS500

(b) Groundtruth affinity y (green),
and imperfect affinity with small
holes yhole (blue)

(c) Groundtruth affinity y (green),
and slightly shifted affinity yshift
(blue)

Figure 1: Sensitivity of the dice loss J and the learned GAN discriminator loss D against
shifts and holes. Comparing the loss of the artificially altered affinities (b) and (c), we measure
J (y,yhole)−J (y,y)
J (y,yshifted)−J (y,y) ≈ 0.16 and D(y,yhole)−D(y,y)

D(y,yshifted)−D(y,y) ≈ 3.6, highlighting that the discriminator has
learned to penalize holes stronger than small shifts in the affinities.

transition from a given image to its corresponding ground truth affinities. It is trained to learn
a mapping from the observed image x to its corresponding affinity map y, G : x → y. We do
not include any random noise in the input to the generator as we intend to learn a deterministic
transition, and also the networks tend to ignore the random noise vector in the input in practice [2].
The discriminator seeks to distinguish between the ground truth affinities and the “fake” affinities
produced by the generator.

The objective of the conditional GAN is the loss mentioned in [2], however we drop the z (noise
vector) which does not affect the training as reported in [2] itself.

LcGAN (G,D) =Ex,y[logD(x, y)]+

Ex[log(1−D(x,G(x))]
(1)

The generator G seeks to minimize the above loss while the adversary D seeks to maximize it. The
generator also minimizes an additional dice loss[3] Ldice(G) between the generated affinities and the
ground truth affinities. Thus the overall objective is the following -

G∗ = argmin
G

max
D
LcGAN (G,D) + λLdice(G) (2)

The architecture of the generator is the U-Net [4] which takes in an image as the input and produces a
n channel output, where n is the number of affinity maps we intend to produce. The discriminator
architecture is the patchgan proposed in [2]. The discriminator can capture patterns well beyond the
simple point-to-point similarity which the dice loss enforces. One such pattern is that the ground truth
affinities are always closed contours and do not have any holes in them, the discriminator could use
this to differentiate between the “real” and “fake” affinity maps, this would then force the generator
to close the holes and thus improve the quality of the affinity maps.

2.1 Adding an auxiliary task to stabilize and improve the GAN training

We find that the above training is unstable and requires extensive tuning of the parameters λ in
equation 2 and the learning rate to obtain the best affinities. We attempted to use the Wasserstein
GAN [5] to stabilize our training, although the training was stabilized, it results in a significant drop
in the quality of the affinities when compared to that of the conditional GAN. As noted earlier, the
ground truth affinities are binary; we suppose that this is a hard target for the generator which leads
to the instability of the training. Hence, we add an auxiliary task of producing smoother targets -
we train the generator to produce the distance transform of the affinities along with the affinities.
The distance transform of the affinities has continuous values and results in a smooth transition from
the values of the pixels at the boundary (0) to the values away from the boundaries (1). Also, the
discriminator is made to additionally differentiate between the distance transform produced by the
generator and the distance transform of the ground truth affinities.

Hence, the generator is trained to produce a mapping G is x→ {y, ỹ} where y is the affinity map and
ỹ is the distance transform. For the following definitions we will decompose the generator into the
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affinity generator Ga(x) and the distance transform generator Gd(x) and apply a cGAN loss to both

L̃cGAN (G,D) = LcGAN (Ga, Da) + LcGAN (Gd, Dd) (3)

For the distance transform regression we utilize the smooth L1 loss (Huber loss)H [6] between the
distance transform affinities which it produces and the distance transform of the ground truth affinities
along with dice loss J .

L̃dice(G) = Ex,y,z [J (y,Ga(x))] L̃huber(G) = Ex,ỹ,z [H(ỹ, Gd(x))] (4)

The final objective is

G∗ = argmin
G

max
D
L̃cGAN (G,D) + λ1L̃dice(G) + λ2L̃huber(G) (5)

We empirically find that this not only stabilizes the training but also leads to a significant improvement
in the quality of the affinities produced. We propose that this is due to the discriminator being able
to capture the structural differences better when provided with smoother images and not due to the
additional supervised loss (Huber loss on the distance transform) on the generator. We verify this
through an ablation study presented in the next section.

3 Results and Experiments

(a) Image (b) Segmentation pro-
duced by our final for-
mulation

(c) Affinities produced
for the vector (-1,0)

(d) Affinities produced
for the vector (0,-9)

Figure 2: A sample segmentation and affinties produced on a BSD500 test image by our final
formulation

We consider the BSD500 datatset[7] for our experiments. The formulation presented in equation
5 obtains an Adjusted Rand Index of 0.832 against the 0.826 reported in [1] (both use the Mutex
Watershed algorithm). The fact that [1] used the edge detection output of an additional edge detector
network and the image as an input to the network while we just give use the image as the input
to our network, highlights the effectiveness and simplicity of our proposed approach. We further
extend the GAN training on unlabelled natural images - after the losses reasonably saturate on the
labelled BSD train data, we present external unlabelled images to the generator at periodic iterations
along with labelled data. On the unlabelled data, we seek to minimize Ex[log(1−D(x,Ga(x))] +
Ex[log(1−D(x,Gd(x))]. Hence, on the labelled data, both the discriminator and generator train,
and on the unlabelled images the discriminator weights are frozen and only the generator updates by
reducing the loss from the discriminator. Training on external unlabelled images and model averaging
significantly improves the rand index to 0.845. Figure 2 shows a sample segmentation and some of
the affinity maps obtained on a BSD500 test image.

3.1 Ablation Study

We perform ablation experiments to provide a better insight to our proposed approach. These are
illustrated in Figure 3. Experiment 1 (Figure 3a), is training the generator with just the supervised dice
loss without any multi-tasking. Experiment 2 (Figure 3b), is training the generator and discriminator
using the loss in equation 2. Experiment 3 (Figure 3c), is not having the discriminator and multi-
tasking just the generator, the loss used is λ1L̃dice(G) + λ2L̃huber(G). Experiment 4 , is when
just the generator is multitasked and not the discriminator, i.e. the discriminator is not asked to
differentiate between “fake” and “real” distance transforms but just the affinities. Experiment 5
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Table 1: Rand Index on BSD500 for experiments in the ablation study

Experiment Rand Index

1 Dice Loss 0.726
3 Dice Loss + Multi Task Generator 0.734
2 Dice Loss + Discriminator 0.79
4 Dice Loss + Discriminator + Multi Task Generator 0.805
5 Dice Loss + Multi Task Generator + Multi Task Discriminator 0.832
6 Dice Loss + Multi Task Generator + Multi Task Discriminator

+ Transfer Learning 0.845

(Figure 3d), is our final formulation given in equation 5. The rand index on the BSD500 dataset for
these experiments are reported in table 1.

The significant improvement in experiment 2 (Dice Loss+ Discriminator) when compared to experi-
ment 1 (Dice Loss) justifies our initial motivation that the supervised losses have certain drawbacks
and hence improving the loss function would result in better quality affinities. Another observation is
that there is a minimal improvement from experiment 1 (Dice Loss) to experiment 3 (Dice Loss+
Multi Task Generator) and from experiment 2 (Dice Loss + Discriminator) to experiment 4 (Dice Loss
+ Discriminator + Multi Task Generator), where the only change is that the generator is multitasked.
However, there is a significant improvement in the rand-index from experiment 4 (Dice Loss +
Discriminator + Multi Task Generator) to experiment 5 (Dice Loss + Multi Task Generator + Multi
Task Discriminator) where the only difference is that the discriminator is multitasked. This bolsters
our claim that the improvement from experiment 2 (Dice Loss + Discriminator) to experiment 5 (Dice
Loss + Multi Task Generator + Multi Task Discriminator) is due to the improved capability of the
discriminator and not the additional supervised loss (Huber loss) in the multitasking generator.

(a) Experiment 1 -
Training just the gen-
erator with the super-
vised dice loss.

(b) Experiment 2 -
Training the gener-
ator and discrimina-
tor according to the
loss in equation 2.

(c) Experiment 3 -
Training just the dis-
criminator in a multi-
task manner.

(d) Experiment 5 - Our
final formulation as men-
tioned in equation 5.

Figure 3: Ablation study

4 Conclusion

The greedy Mutex Watershed segmentation algorithm [1] is especially susceptible to undersegmenta-
tion, when the input graph weights, describing the merge and split costs have small holes. We find that
the pixelwise loss (used in [1]) is not sensitive enough to these errors and the algorithm’s input can be
improved for natural images by adding a GAN loss. We find that this approach significantly improves
the segmentation results, but suffers from training instabilities. Introducing a smooth auxiliary loss,
we stabilize the cGAN training and furhter improve the segmentation accuracy. We hope that the
proposed idea of adding an auxiliary multi task loss on a smoother target where the actual task has a
discrete target can be extended to other image translation problems using GANs such as from pictures
to sketches.
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