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Abstract

In this paper, we propose an efficient stochastic subgradient method for solving
a broad class of non-convex min-max problems and establish its iteration com-
plexities for different convergence measures depending on whether the problem is
concave in terms of the variable of maximization. When the objective is weakly
convex in terms of min variable and concave in terms of the max variable, we
prove that the proposed algorithm converges to a nearly ε-stationary solution of
the equivalent minimization problem with a complexity of O(1/ε6). When the
objective is weakly convex in terms of the min variable and weakly concave in
terms of the max variable, we prove the algorithm converges a nearly ε-stationary
solution of the min-max problem with the same complexity of O(1/ε6). To the
best of our knowledge, these are the first non-asymptotic convergence results of
stochastic optimization for solving non-convex min-max problems.

1 Introduction
The main goal of this paper is to design provably efficient algorithms for solving saddle-point (aka
min-max) problems of the following form that exhibits non-convexity:

min
x∈X

max
y∈Y

f(x,y), (1)

where X and Y are closed convex sets, and f(x,y) is non-convex in terms of x and could be
non-concave in terms of y. This problem has broad applications in machine learning, e.g., generative
adversarial networks [11, 1], distributionally robust optimization [16, 15], reinforcement learning [2],
and adversarial learning [23]. For more details about these applications and their formulations, please
refer to the long papers of this extended abstract [18, 14].

Although many previous studies have considered the min-max formulation and proposed efficient
algorithms, most of them focus on the convex-concave family, in which f(x,y) is convex in x given
y and is concave in y given x. However, convex-concave formulations cannot cover some important
new methods/technologies/paradigms arising in machine learning. Hence, it becomes an emergent
task to design provably efficient algorithms for solving (1) that exhibits non-convexity structure.

Solving non-convex min-max problems is more challenging than solving non-convex minimization
problems. Although there is increasing interest on non-convex optimization problems, most of the
existing algorithms are designed for the minimization problem without considering the max-structure
of the problem when it appears, and therefore are not directly applicable to (1). For example,
stochastic gradient descent (SGD) for a minimization problem assumes that a stochastic gradient is
available at each iteration for the objective of the minimization problem, which might be impossible
for (1) if the maximization over y is non-trivial or if f contains expectations. When designing an
optimization algorithm for (1), the important questions are whether the algorithm has a polynomial
runtime and what quality it guarantees in the output. In the recent studies for non-convex minimization
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problems [4, 5, 3, 6, 8, 7, 9, 10, 13, 17, 19, 20], polynomial-time algorithms have been developed for
finding a nearly stationary point that is close to a point where the subdifferential of objective function
almost contains zero. Following this stream of work, we would naturally ask a question whether it is
possible to design a polynomial time algorithm for (1) that finds a nearly first-order stationary point
of the problem. We provide affirmative answers in this extended abstract. In particular, we propose a
stagewise primal-dual stochastic subgradient method that is motivated by the inexact proximal point
method. At each stage the standard primal-dual stochastic subgradient method is employed to solve a
constructed convex-concave min-max problem. We prove the iteration complexities of the proposed
algorithm for two classes of problems for finding a nearly stationary solution.

• When f(x,y) is weakly convex in terms of x and concave in terms of y, we prove the
proposed algorithm can find a nearly ε-stationary solution for the equivalent minimization
problem with an iteration complexity of O(1/ε6).

• When f(x,y) is weakly convex in terms of x and weakly-concave in terms of y, we prove
the proposed algorithm can find a nearly ε-stationary solution for the min-max problem with
an iteration complexity of O(1/ε6).

2 Preliminaries
We use ‖ · ‖ to denote the Euclidean norm. Given a function h : Rd → R ∪ {+∞}, we define the
(Fréchet) subdifferential of h as ∂h(x) = {ζ ∈ Rd|h(x′) ≥ h(x)+ζ>(x′−x)+o(‖x′−x‖), x′ →
x}, where each element in ∂h(x) is called a (Fréchet) subgradient of h at x. We define ∂xf(x,y) as
the subgradient of f(x,y) with respective to x for a fixed y and ∂y[−f(x,y)] as the subgradient of
−f(x,y) with respective to y for a fixed x. Let Z = X ×Y and 1Z(z) denote the indicator function,
πX [x] denote the projection onto X .

A function h : X → R is ρ-weakly convex if h(x) + ρ
2‖x‖

2 is convex. Similarly, a function
h : Y → R is ρ-weakly concave if h(y) − ρ

2‖y‖
2 is concave. Define ψ(x) = maxy∈Y f(x,y).

Dist(x, S) denotes the Euclidian distance from a point x to a set S. The assumptions made for the
optimization problem (1) are the following:
Assumption 1. (1)X and Y are compact sets, and f(x,y) is finite onX×Y; (2) f(x,y) is ρ-weakly
convex in x for any y ∈ Y; (3) f(x,y) is concave in y or is ρ-weakly concave in y for any x ∈ X ;
(7) For any (x,y) ∈ X × Y and any realization of ξ, we can compute (gx,−gy) ∈ ∂xF (x,y, ξ)×
∂y[−F (x,y, ξ)] such that (Egx,−Egy) ∈ ∂xf(x,y) × ∂y[−f(x,y)]; (8) E‖g(j)

x ‖22 ≤ M2
x and

E‖g(j)
y ‖2y,∗ ≤M2

y for any (x,y) ∈ X × Y for some Mx > 0 and My > 0.

It should be noted that we do not assume the smoothness of f(x,y) in terms of x and y. However,
a smooth function f(x,y) is a weakly convex function in terms of x and weakly concave in terms
of y. We differentiate the case that f(x,y) is concave in terms of y from the case that f(x,y) is
weakly-concave in terms of y. This is because that in the former case, we can prove a stronger
convergence. In particular, when f(x,y) is concave in terms of y, we establish convergence to a
nearly stationary point for the equivalent minimization problem minx∈X ψ(x); and when f(x,y) is
weakly-concave in terms of y, we establish convergence to a nearly stationary point for the min-max
saddle-point problem minx∈X maxy∈Y f(x,y). To this end, we first introduce nearly stationarity
for the minimization problem and the min-max problem.

Under Assumption 1 with f(x,y) being concave in terms of y, ψ(·) is ρ-weakly convex (and thus
non-convex) so that finding the global optimal solution in general is difficult. An alternative goal
is to find a stationary point of (1) which is defined as a point x∗ ∈ X such that 0 ∈ ∂ψ(x∗).
Because of the iterative nature of optimization algorithms, such a stationary point generally can
only be approached in the limit as the number of iterations increases to infinity. With finitely
many iterations, a more realistic goal is to find an ε-stationary point, i.e., a point x̂ ∈ X satisfying
Dist(0, ∂ψ(x̂)) := minζ∈∂ψ(x̂) ‖ζ‖2 ≤ ε. However, when the objective function is non-smooth,
computing an ε-stationary point is still not an easy task even for convex optimization problem. A
simple example is minx∈R |x| where the only stationary point is 0 but any x 6= 0 is not an ε-stationary
point (ε < 1) no matter how close it is to 0. This situation is likely to occur in problem (1) because
of the potential non-smoothness of f and the presence of domain constraints. Therefore, following
[5, 6, 3, 24], we consider the Moreau envelope of ψ in (1), which is

ψγ(x) := min
z∈Rp

{
ψ(z) +

1

2γ
‖z− x‖22

}
(2)
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Algorithm 1 A Stagewise Primal-Dual Stochastic Subgradient Method
1: Input: step size ηk, integers Tk and non-decreasing weights θk, z0 ∈ Z , 0 < γ < ρ−1

2: for k = 0, . . . ,K − 1 do
3: Let Fk(x,y) = f(x,y) + 1

2γ ‖x− xk‖2 if f(x,y) is concave in y, otherwise let
Fk(x,y) = f(x,y) + 1

2γ ‖x− xk‖2 − 1
2γ ‖y − yk‖2

4: zk+1 := (xk+1,yk+1) = PDSG(Fk, zk, ηk, Tk)
5: end for
6: Sample τ randomly from {0, 1, . . . ,K − 1} with Prob(τ = k) = θk∑K−1

k=0 θk
.

7: Output: zτ .

Algorithm 2 PDSG: Primal-Dual Stochastic Subgradient Method: PDSG(F, z0, η, T )
1: for t = 0, ..., T − 1 do
2: Sample ξt , and compute stochastic subgradients (gtx,−gty) of F (x,y) at zt
3: Compute

xt+1 = πX [xt − ηgtx], yt+1 = πY [yt + ηgty]

4: end for
5: Return (

∑T−1
t=0 xt,

∑T−1
t=0 yt)/T if f(x,y) is concave in y or (xτ ,yτ ) if f(x,y) is weakly

concave in y where τ is randomly sampled from {0, . . . , T − 1}

where γ > 0. The above problem is well-defined when ψ(·) is ρ-weakly convex and 1
γ > ρ, whose

optimal solution denoted by proxγψ(x) is unique. Moreover, ψγ(·) is a smooth function whose
gradient is

∇ψ(x) = γ−1(x− proxγψ(x)). (3)

The definition of the Moreau envelope directly implies that for any x ∈ Rd, ‖x+−x‖ = γ‖∇ψγ(x)‖,
ψ(x+) ≤ ψ(x), Dist(0, ∂ψ(x+)) = ‖∇ψγ(x)‖, where x+ = proxγψ(x) [5, 6, 3, 24], Hence, the
norm of the gradient ‖∇ψγ(x)‖ can be used as measure of the quality of a solution x̄. This lead
us to the definition of nearly ε-stationary solution to the problem minx∈X ψ(x), i.e., x is nearly
ε-stationary solution if ‖x− proxγψ(x)‖ ≤ O(ε) such that ψγ(x)‖ ≤ ε.

When f(x,y) is weakly concave in terms of y, we consider nearly stationarity for the min-max
saddle-point problem (1). A point z ∈ Z is called first-order stationary point of the min-max
saddle-point problem if

z ∈ F∗ := {(x,y) ∈ X × Y : 0 ∈ ∂x(f(x,y) + 1Z(x,y)), 0 ∈ ∂y(f(x,y) + 1Z(x,y))}.

An iterative algorithm can be expected to find an ε-stationary solution such that Dist2(0, ∂(f(x,y) +
1Z(x,y)) ≤ ε2. Similar to the previous argument, the non-smoothness nature of the problem makes
it challenging to find an ε-stationary solution. To address this, we introduce the notion of nearly
stationary point for a min-max saddle-point problem. A point w = (u,v)> ∈ Z is called a nearly
ε-stationary solution to (1) if

‖w −w+‖ ≤ O(ε), Dist2(0, ∂(f(u+,v+) + 1Z(u+,v+))] ≤ ε2.

where w+ = (u+,v+)> is the optimal solution to the convex-concave saddle-point problem
minx∈X maxy∈Y f(x,y) + ρ

2‖x− u‖2 − ρ
2‖y − v‖2.

3 Stagewise Primal-Dual Stochastic Subgradient Method
The proposed stochastic algorithm is presented in Algorithm 1 and Algorithm 2. The main Algorithm 1
is motivated by the proximal point method, and is running with multiple stages. At each stage,
depending on whether f(x,y) is concave in terms of y or not, a strongly convex term in terms of x
and a strongly concave term in terms of y is added to the objective function. The proximal center
xk,yk in the added strongly convex terms are updated using the returned solution from the last stage.
Then the newly formed objective function Fk(x,y) is convex in terms of x and concave in terms
of y. Thus, the standard primal-dual stochastic subgradient method can be employed to solve the
constructed convex-concave problem. The step size ηk and the number of iterations Tk for each
stage is dynamically changed. We present the convergence of Algorithm 1 for solving the min-max
problem in the following theorems.
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Imbalanced CIFAR10 data, ResNet18
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Imbalanced CIFAR10 data, VGG19
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Imbalanced CIFAR10 data, MobilenetV2

0 50 100

Number of Epochs

0

0.2

0.4

0.6

0.8

1

T
ra

in
in

g
 A

c
c
u
ra

c
y

ERM

DRO

0 50 100

Number of Epochs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

T
e
s
t 
A

c
c
u
ra

c
y

ERM

DRO

Figure 1: Comparison of ERM and DRO for ResNet18, VGG19, and MobileNetV2.

Theorem 1. Suppose Assumption 1 holds with f(x,y) being concave in terms of y. Let x+
k =

proxγψ(xk), where xk is generated in Algorithm 1. . By running Algorithm 1 with γ = 1/(2ρ),
θk = (k + 1)α with α > 1, ηk = c/(k + 1), Tk = (k + 1)2 with c > 0, and a total of stages
K = O(1/ε2), then we have

E[‖xτ − xτ
+‖2] ≤ O(ε2), E[Dist(0, ∂ψ(x+

τ ))2] ≤ ε2.
The total iteration complexity is O(1/ε6).
Theorem 2. Suppose Assumption 1 holds with f(x,y) being ρ-weakly-concave in terms of y. Let
z+k = (x+

k ,y
+
k )> is the solution to minx∈X maxy∈Y f(x,y) + ρ

2‖x− xk‖2 − ρ
2‖y − yk‖2, where

zk = (xk,yk)> is generated in Algorithm 1. By running Algorithm 1 with γ = 1/(2ρ), θk = (k+1)α

with α > 1, ηk = c/(k + 1), Tk = (k + 1)2 with c > 0, and a total of stages K = O(1/ε2) we have
E[‖zτ − z+τ ‖2] ≤ O(ε2), E[Dist2(0, ∂(f(x+

τ ,y
+
τ ) + 1Z(x+

τ ,y
+
τ )))] ≤ ε2.

The total iteration complexity is O(1/ε6).

4 Numerical Experiments
For experiments, we consider the following distributionally robust optimization proposed by [16]:

min
x∈X

max
y∈Y

n∑
i=1

yifi(x)− r(y), (4)

where fi(x) denotes the loss of the model denoted by x on the i-th data point, X ⊆ Rd is a closed
convex set, Y = {y ∈ Rn |

∑n
i=1 yi = 1, yi ≥ 0 i = 1, ...., n} is a simplex, and r : Y → R is

a closed convex function. They showed that when r(y) is the indicator function of the constraint
set {y :

∑n
i=1(yi − 1/n)2 ≤ ρ} for some ρ > 0, the above min-max formulation achieves an

effect that minimizes not only the bias but also the variance of the prediction, which could yield
better generalization in some cases. In practice, one may also consider a regularized variant where
r(y) = λV (y,1/n) for some λ > 0, where V (·, ·) denotes some distance measure of two vectors
(e.g., KL divergence, Euclidean distance). While optimization algorithms for solving convex-concave
fromulation (4) were developed [15], it is still under-explored for problems with non-convex losses.
When fi(x) is a non-convex loss function (e.g., the loss function associated with a deep neural
network), (4) is non-convex in terms of x but is concave in y.

We conduct a classification experiment to compare the standard empirical risk minimization (ERM)
with distributionally robust optimization (DRO) (4). We use SGD to solve ERM and use Algo-
rithm 1 to solve (4). We use imbalanced CIFAR10 data and three popular deep neural networks
(ResNet18 [12], VGG19 [22], MobileNetV2 [21]) for the experiments. The original training data
of CIFAR10 has 10 classes, each of which has 5000 images. We remove 4900 images for 5 classes
to make the training data imbalanced. The test data remains intact. For ERM, we use SGD with
stepsize 0.1 for epochs 1 ∼ 60, and 0.01 for epochs 61 ∼ 120. For our robust optimization, we use
Algorithm 2 with ηx = 0.1 for epochs 10 ∼ 60 and ηx = 0.001 for epochs 61 ∼ 120, γ = 0.2,
r(y) = λ

∑n
i=1 yi log yi with λ = 5, ηy = 10−5. We use 128 training examples as a minibatch

for both methods. The training and testing curves are plotted in Figure 1, which show that robust
optimization scheme is considerably better than ERM when dealing with imbalanced data.

5 Conclusion
In this paper, we have proposed a novel stagewise stochastic algorithm for solving a class of non-
convex min-max optimization problems with polynomial time complexity for finding nearly stationary
points. Experimental results verify its effectiveness for distributionally robust optimization in deep
learning.
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