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Abstract

We reconsider the training objective of Generative Adversarial Networks
(GANs) from the mixed Nash Equilibria (NE) perspective. Inspired by the
classical prox methods, we develop a novel algorithmic framework for GANs
via an infinite-dimensional two-player game and prove rigorous convergence
rates to the mixed NE. We then propose a principled procedure to reduce
our novel prox methods to simple sampling routines, leading to practically
efficient algorithms. Finally, we provide experimental evidence that our
approach outperforms methods that seek pure strategy equilibria, such as
SGD, Adam, and RMSProp, both in speed and quality.

1 Introduction

Training of Generative Adversarial Networks (GANs) are known to be notoriously difficult.
In the language of game theory, GAN seeks for a pure strategy equilibrium, which is well-
known to be ill-posed in many scenarios [6]. Indeed, it is known that a pure strategy
equilibrium might not exist [2], might be degenerate [22], or cannot be reliably reached by
existing algorithms [16]. These theoretical barriers are corroborated with abundant empirical
evidence, where popular algorithms such as SGD or Adam lead to unstable training.

In this work, we propose to study the mixed Nash Equilibrium (NE) of GANs: Instead
of searching for an optimal pure strategy which might not even exist, we optimize over
the set of probability distributions over pure strategies of the networks. We demonstrate
that the prox methods of [19, 17] can be extended to continuously many strategies, and
hence applicable to training GANs. We then construct a principled procedure to reduce our
novel prox methods to certain sampling tasks that were empirically proven easy by recent
work [4, 5, 8]. Further, we establish heuristic guidelines to greatly scale down the memory
and computational costs. Finally, we experimentally show that our algorithms consistently
achieve better or comparable performance than popular baselines.

Related Work: While the literature on training GANs is vast, to our knowledge, there exist
only few papers on the mixed NE perspective [2, 10, 20], and they propose only heuristic
algorithms. The work [11] proposes a provably convergent algorithm for finding the mixed
NE of GANs under the unrealistic assumption that the discriminator is a single-layered
neural network. In contrast, our results are applicable to arbitrary architectures.

Due to its fundamental role in game theory, many prox methods have been applied to study
the training of GANs [7, 9, 15]. However, these work focus on the classical pure strategy
equilibria and is hence distinct from our problem formulation.
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Algorithm 1: Infinite-Dimensional Entropic MD

Input: Initial distributions µ1, ν1, learning rate η
for t = 1, 2, . . . , T − 1 do

νt+1 = MDη

(
νt,−G†µt

)
, µt+1 = MDη (µt,−g +Gνt);

return ν̄T = 1
T

∑T
t=1 νt and µ̄T = 1

T

∑T
t=1 µt.

2 Problem Formulation: Mixed Strategy Formulation for GANs

For illustration, let us focus on the Wasserstein GAN [1]:

min
θ∈Θ

max
w∈W

EX∼Preal
[fw(X)]− EX∼Pθ

[fw(X)], (1)

where Θ is the set of parameters for the generator and W the set of parameters for the
discriminator1 f , typically both taken to be neural nets.

The high-level idea of our approach is, instead of solving (1) directly, we focus on the mixed
strategy formulation of (1). In other words, letting M(Θ) and M(W) be the set of all
probability distributions over Θ and W, we search for the optimal distribution that solves:

min
ν∈M(Θ)

max
µ∈M(W)

Ew∼µEX∼Preal
[fw(X)]− Ew∼µEθ∼νEX∼Pθ

[fw(X)]. (2)

Define the function g :W → R by g(w) := EX∼Preal
[fw(X)] and the operator G :M(Θ)→

F(W) as (Gν)(w) := Eθ∼ν,X∼Pθ
[fw(X)]. Denoting 〈µ, h〉 := Eµh for any probability mea-

sure µ and function h, we may rewrite (2) as

min
ν∈M(Θ)

max
µ∈M(W)

〈µ, g〉 − 〈µ,Gν〉 . (3)

We have thus shown that the finding the mixed NE of Wasserstein GANs is nothing but
solving a bi-affine two-player game with continuously infinite strategies, in contrast to the
classical finite-strategy setting. Inspired by the entropic prox methods [18, 3, 17] for
solving finite games, we ask:

Can the entropic Mirror Descent and Mirror-Prox be extended to infinite
dimension to solve (3)? Can we retain the convergence rates as in the
finite-strategy setting?

3 Infinite-Dimensional Prox Methods and Convergence Rates

The purpose of this section is to answer the above two questions with an affirmative “yes”.

Theorem 1 (Infinite-Dimensional Mirror Descent, informal). 1. Let Φ be the negative Shan-
non entropy, Φ? be its Fenchel dual, and dΦ be the Fréchet derivative. For any probability
measure µ on a set Z, we may define

µ+ = MDη (µ, h) ≡ µ+ = dΦ? (dΦ(µ)− ηh) ≡ dµ+ =
e−ηhdµ∫
e−ηhdµ

. (4)

2. Assume that we have access to the deterministic derivatives
{
−G†µt

}T
t=1

and

{g −Gν}Tt=1, then Algorithm 1 achieves O
(
T−1/2

)
-NE. If we only have access to unbi-

ased stochastic derivatives, then Algorithm 1 achieves O
(
T−1/2

)
-NE in expectation.

Remark. The case for entropic Mirror-Prox can be similarly derived.

Notice that Algorithm 1 iterates over the space of probability measures, which we cannot
compute. We hence need to an algorithm to approximate these probability updates, which
is the purpose of the next section.

1Also known as “critic” in Wasserstein GAN literature.
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Algorithm 2: Mirror-GAN: Approximate Mirror Decent for GANs

Input: w̄1, θ̄1 ← random initialization, {γt}Tt=1, {εt}Tt=1, {Kt}T−1
t=1 , β.

for t = 1, 2, . . . , T − 1 do

w̄t,w
(1)
t ← wt;

θ̄t,θ
(1)
t ← θt;

for k = 1, 2, . . . ,Kt do
Generate A = {X1, . . . , Xn} ∼ P

θ
(k)
t

;

θ
(k+1)
t = θ

(k)
t + γt

n∇θ
∑
Xi∈A fwt(Xi) +

√
2γtεtN (0, I);

Generate B = {Xreal
1 , . . . , Xreal

n } ∼ Preal;
Generate B′ = {X ′1, . . . , X ′n} ∼ Pθt ;

w
(k+1)
t = w

(k)
t +

γt
n
∇w

∑
Xreal

i ∈B

f
w

(k)
t

(Xreal
i )− γt

n
∇w

∑
X′i∈B′

f
w

(k)
t

(X ′i) +
√

2γtεtN (0, I);

w̄t ← (1− β)w̄t + βw
(k+1)
t ;

θ̄t ← (1− β)θ̄t + βθ
(k+1)
t ;

wt+1 ← (1− β)wt + βw̄t;

θt+1 ← (1− β)θt + βθ̄t;

return wT ,θT .

4 From Theory to Practice

Section 4.1 reduces Algorithm 1 to a sampling routine [23] that has widely been used in
machine learning. Section 4.2 proposes to further simplify the algorithm by summarizing a
batch of samples by their mean.

To ease the notation, we assume η = 1 throughout this section as η does not play an
important role in the derivation below.

4.1 Implementable Entropic MD: From Probability Measure to Samples

Step 1: Reformulating Entropic Mirror Descent Iterates

Our first step is to express (4) in a more tractable form. Using properties of the (negative)
Shannon entropy, we may express the probability measures of Algorithm 1 in terms of the

history: dµT =
exp{(T−1)g−G

∑T−1
s=1 νs}dw∫

exp{(T−1)g−G
∑T−1

s=1 νs}dw
and dνT =

exp{G†∑T−1
s=1 µs}dθ∫

exp{G†∑T−1
s=1 µs}dθ .

Step 2: Empirical Approximation for Stochastic Derivatives

The derivatives of (3) involve the function g and operator G, which involve taking expecta-
tion over distributions we do not have access to. However, if we are able to draw samples
from µt and νt, then we can approximate the expectation via the empirical average, which
leads to unbiased stochastic derivatives.

Step 3: Sampling by Stochastic Gradient Langevin Dynamics

Now, assuming that we have obtained unbiased stochastic derivatives −
∑t
s=1 Ĝ

†µs and∑t
s=1

(
−ĝ + Ĝνs

)
. We may draw samples from the updated probability measures

(µt+1, νt+1) by using the Stochastic Gradient Langevin Dynamics (SGLD) [23] as follows.
For any probability distribution with density function e−hdz, the SGLD iterates as

zk+1 = zk − γ∇̂h(zk) +
√

2γεξk, (5)

where γ is the step-size, ∇̂h is an unbiased estimator of ∇h, ε is the thermal noise, and ξk ∼
N (0, I) is a standard normal vector, independently drawn across different iterations. The
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(a) RMSProp (b) Adam (c) Mirror-GAN

Figure 1: Dataset LSUN bedroom, 105 iterations.

theory of [23] states that, for large enough k, the iterates of SGLD above (approximately)
generate samples according to the probability measures (µt+1, νt+1). Recursively applying
Steps 1-3, we can then acquire approximate samples from (µT , νT ).

4.2 Summarizing Samples by Averaging: A Simple yet Effective Heuristic

Although the algorithm in Section 4.1 is implementable, the resulting computational com-
plexity is O(T 2), and is hence too extensive for practical use.

An intuitive approach to alleviate the computational issue is to summarize each distribution
by only one parameter. To this end, the mean of the distribution is the most natural
candidate, as it not only stablizes the algorithm, but also is often easier to acquire than
the actual samples. In this paper, we adopt the same approach as in [4] where we use
exponential damping (the β term in Algorithm 2) to increase stability. Algorithm 2,
termed the Mirror-GAN, shows how to encompass this idea into entropic MD.

5 Experimental Evidence

We first repeat the synthetic setup as in [12]. On synthetic data, including 8 Gaussian
mixtures, 25 Gaussian mixtures and swissroll, our proposed methods obtain better results
than its baseline counterparts such as SGD and Adam.

For real images, we use MNIST and LSUN as the dataset. We use the same architecture
(DCGAN) as in [21] with batch normalization. As the networks become deeper in this case,
the gradient magnitudes differ significantly across different layers. To alleviate such issues,
we replace SGLD by the RMSProp-preconditioned SGLD [14] for our sampling routines.
For baselines, we consider two adaptive gradient methods: RMSProp and Adam.

Figure 1 shows the results at the 105th iteration. The RMSProp and Mirror-GAN produce
images with reasonable quality, while Adam outputs random noise. The visual quality of
Mirror-GAN is better than RMSProp, as RMSProp sometimes generates blurry images (the
(3, 3)- and (1, 5)-th entry of Figure 1(a)).

6 Conclusions

Our goal of systematically understanding and expanding on the game theoretic perspective
of mixed NE along with stochastic Langevin dynamics for training GANs is a promising
research vein. While simple in retrospect, we provide guidelines in developing approximate
infinite-dimensional prox methods that probably learn the mixed NE of GANs. Our pro-
posed Mirror- and Mirror-Prox-GAN algorithm feature cheap per-iteration complexity while
rapidly converging to solutions of good quality.
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