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Abstract

Recent literature has demonstrated promising results on the training of Genera-
tive Adversarial Networks by employing a set of discriminators, as opposed to
the traditional game involving one generator against a single adversary. Those
methods perform single-objective optimization on some simple consolidation of
the losses, e.g. an average. In this work, we revisit the multiple-discriminator
approach by framing the simultaneous minimization of losses provided by differ-
ent models as a multi-objective optimization problem. Specifically, we evaluate
the performance of multiple gradient descent and the hypervolume maximization
algorithm on a number of different datasets. Our results indicate that hypervolume
maximization presents a better compromise between sample quality and diversity,
and computational cost than previous methods.

1 Introduction

Generative Adversarial Networks (GANs) [1] offer a new approach to generative modeling, using
game-theoretic training schemes to implicitly approximate a probability density represented by
training data. Prior to the emergence of GAN architectures, realistic generative modeling remained
elusive. When offering unparalleled realism, GAN training remains fraught with stability issues.
Commonly reported shortcomings involved in the GAN game are the lack of useful gradients provided
by the discriminator, and mode collapse, i.e. lack of diversity in the generator’s samples. Considerable
research effort has been devoted in recent literature in order to overcome training instability, i.e.
divergence and mode-collapse of the generator when the discriminator is able to easily distinguish
real and fake samples during training [2, 3]. Neyshabur et al. [4], for instance, proposed a GAN
variation such that one generator is trained against a set of discriminators, where each discriminator
sees a fixed random projection of the inputs. Prior work, including GMAN [5] has also explored the
use of multiple discriminators in GANs training.

In this paper, we build upon Neyshabur et al.’s introduced framework [4] and propose treating the
1 generator vs. many discriminators setting as a multi-objective game. Specifically, we propose
treating the loss signal provided by each discriminator as an independent objective function, and
simultaneously minimize such losses. We exploit previously introduced methods in literature such
as the multiple gradient descent algorithm (MGD) [6]. However, due to MGD’s prohibitively high
cost in the case of large neural networks, we propose the use of more efficient alternatives such as
hypervolume maximization. In contrast to Neyshabur et al.’s approach, where the average loss is
minimized when training the generator, hypervolume maximization (HV) is shown to optimize a
weighted loss, and the generator’s training will adaptively assign greater importance to feedback from
discriminators against which it performs poorly.
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2 Preliminaries

Multi-objective optimization. We define a multi-objective optimization problem [7] as finding x
such that: min F(x) = [f1(x), f2(x), ..., fK(x)]T , x ∈ Ω, where K is the number of objectives, Ω
is the variables space and x = [x1, x2, ..., xn]T ∈ Ω is a decision vector or possible solution to the
problem. F : Ω→ RK is a set of K-objective functions that maps the n-dimensional variables space
to the K-dimensional objective space.

Pareto-dominance. Let x1 and x2 be two decision vectors. x1 is said to dominate x2 (denoted by
x1 ≺ x2) if and only if fi(x1) ≤ fi(x2) for all i ∈ {1, 2, . . . ,K} and fj(x1) < fj(x2) for some
j ∈ {1, 2, . . . ,K}. If a decision vector x is dominated by no other vector in Ω, x is said to be
non-dominated.

Pareto-optimality. A decision vector x∗ ∈ Ω is said to be Pareto-optimal if and only if there is
no x ∈ Ω such that x ≺ x∗, i.e. x∗ is a non-dominated solution. The Pareto-optimal Set (PS) is
defined as the set of all Pareto-optimal solutions x ∈ Ω, i.e., PS = {x ∈ Ω|x is Pareto optimal}.
The set of all objective vectors F(x) such that x is Pareto-optimal is called Pareto front (PF), that is
PF = {F(x) ∈ RK |x ∈ PS}.
Pareto-stationarity. Pareto-stationarity is a necessary condition for Pareto-optimality. For fk
differentiable everywhere for all k, F is said to be Pareto-stationary at x if there exists a set of scalars
αk, k ∈ {1, . . . ,K}, such that

∑K
k=1 αk∇fk = 0,

∑K
k=1 αk = 1, αk ≥ 0 ∀k.

Multiple Gradient Descent. Multiple gradient descent [6, 8, 9] was proposed for the unconstrained
case of multi-objective optimization of F(x) assuming a convex, continuously differentiable and
smooth fk(x) for all k. MGD finds a common descent direction for all fk by defining the convex
hull of all ∇fk(x) and finding the minimum norm element within it. Consider w∗ given by: w∗ =

argmin||w||, w =
∑K

k=1 αk∇fk(x), s.t.
∑K

k=1 αk = 1, αk ≥ 0 ∀k. w∗ will be either 0
in which case x is a Pareto-stationary point, or w∗ 6= 0 and then w∗ is a descent direction for all fi(x).
Similar to gradient descent, MGD consists in finding the common steepest descent direction w∗t at
each iteration t, and then updating parameters with a learning rate λ according to xt+1 = xt−λ w∗t

||w∗t ||
.

3 Related work

3.1 Training GANs with multiple discriminators

One of the known difficulties in the vanilla GAN training is due to the discriminator quickly learning
to distinguish real and generated samples [10], thus providing no meaningful error signal to improve
the generator thereafter. Durugkar et al. [5] proposed the Generative Multi-Adversarial Networks
(GMAN) which consist in training the generator against a softmax weighted arithmetic average of K
different discriminators, according to:

LG =

K∑
k=1

αkLDk , (1)

where αk = e
βLDk∑K

j=1 e
βLDj

, β ≥ 0, and LDk is the loss of discriminator k and defined as:

LDk = −Ex∼pdata logDk(x)− Ez∼pz log(1−Dk(G(z))), (2)

where Dk(x) and G(z) are the outputs of the k-th discriminator and the generator, respectively.
The goal of using the proposed averaging scheme is to privilege discriminators with respect to
which generator’s performance is worse. Experiments were performed with β = 0 (equal weights),
β → ∞ (only worst discriminator is taken into account), β = 1, and β learned by the generator.
Models with K = {2, 5} were tested and evaluated using a proposed metric and the Inception
score [11]. However, results showed that the simple average of discriminator’s losses provided the
best scores in most of the considered cases. Neyshabur et al. [4] proposed training a GAN using
K discriminators having the same architecture. Each discriminator Dk sees a different randomly
projected lower-dimensional version of inputs. Random projections are defined by a random matrix
Wk, which remains fixed during training. An upper bound provided shows the distribution induced
by the generator will approximate the real data distribution as long as there is a sufficient number
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of discriminators. Intuitively, real and fake samples are more alike after projection, thus avoiding
early convergence of discriminators, which leads to common stability issues in GAN training such
as mode-collapse [10]. Losses of each discriminator LDk are the same as shown in Eq. 2. The
generator loss LG is defined as simply the average of the losses provided by each discriminator, i.e.
LG = − 1

K

∑K
k=1 Ez∼pz logDk(G(z)).

4 Multi-objective training of GANs with multiple discriminators

We introduce a variation of the GAN game such that the generator solves the following multi-
objective problem: minLG(x) = [l1(z), l2(z), ..., lK(z)]T , where lk = −Ez∼pz logDk(G(z)),
k ∈ {1, ...,K}, is the loss provided by the k-th discriminator. Training proceeds with alternate
updates of discriminators and the generator. Updates of each discriminator are performed to minimize
the loss described in Eq. 2. A natural choice for generator’s updates is MGD. However, computing
the direction of steepest descent w∗ before every parameter update step, as required in MGD, can be
prohibitively expensive for large neural networks. Therefore, we propose an alternative scheme for
multi-objective optimization and argue that both our proposal and previously published methods can
all be viewed as performing computationally more efficient versions of MGD update rule without the
burden of having to solve a quadratric program, i.e. computing w∗ every iteration.

4.1 Hypervolume maximization for training GANs

Fleischer [12] has shown that maximizing the hypervolume defined by the region within a set
of cost functions and a shared upper bound (referred to as nadir point) yields Pareto-optimal
solutions. Since MGD converges to a set of Pareto-stationary points, hypervolume maximiza-
tion results in a sub-set of the solutions obtained by MGD. We exploit such property and de-
fine the generator loss as the negative log-hypervolume LG = −V = −

∑K
k=1 log(η − lk),

where η is an upper bound for all lk. In Fig. 1 we provide an illustrative example for the
case where K = 2. The highlighted region corresponds to eV . Since the nadir point η∗ is
fixed, V will only be maximized, and consequently LG minimized, if each lk is minimized.
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l

η

η
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Figure 1: 2D example of the objective space
where the generator loss is being optimized.

Moreover, by adapting the results shown in [13],
the gradient of LG with respect to any generator’s
parameter θ is given by:

∂LG

∂θ
=

K∑
k=1

1

η − lk
∂lk
∂θ

. (3)

In other words, the gradient can be obtained by com-
puting a weighted sum of the gradients of the losses
provided by each discriminator, whose weights are
defined as the inverse distance to the nadir point
components. This formulation will naturally assign
more importance to higher losses in the final gradi-
ent, which is another useful property of hypervol-
ume maximization. Similarly to [13], we propose

an adaptive scheme for η such that at iteration t: ηt = δmaxk{lk,t}, where δ > 1 is a user-defined
hyperparameter. This enforces mink{η−lk} to be higher when maxk{lk,t} is high and low otherwise,
which induces a similar behavior as an average loss when training begins and places more importance
on high loss discriminators as training progresses.

5 Experiments and Discussion

We first exploited the relatively low dimensionality of MNIST and used it as testbed for a comparison
of MGD with the other approaches, i.e. average loss minimization (AVG) [4], GMAN’s weighted
average loss [5] and hypervolume maximization (HV). Experiments over 100 epochs with 8 discrimi-
nators are reported in Fig. 2 and Fig. 3. In Fig. 2, box-plots refer to 30 independent computations
of the Fréchet Inception Distance (FID) [14] over 10000 images sampled from the generator which
achieved the minimum FID at train time. FID results are measured at train time over 1000 images
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and the best values are reported in Fig. 3 along with the necessary wall-clock time to achieve it.
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Figure 2: Box-plots corresponding to 30 indepen-
dent FID computations with 10000 images. MGD
performs consistently better than other methods,
followed by hypervolume maximization. Models
that achieved minimum FID at train time were
used. Red and blue dashed lines are the FIDs of a
random generator and real data, respectively.
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Figure 3: Time vs. best FID achieved during train-
ing for each approach. FID values are computed
over 1000 generated images after every epoch.
MGD performs relevantly better than others in
terms of FID, followed by HV. However, MGD
is approximately 7 times slower than HV. HV is
well-placed in the time-quality trade-off.

We further evaluate the performance of HV compared to baseline methods using the CIFAR-10
dataset. DCGAN [15] and WGAN-GP [16] were included in the experiments for FID reference. Same
architectures as in [4] were employed for all multi-discriminators settings. An increasing number of
discriminators was used. A ResNet-18 [17] trained on CIFAR-10 until reaching approximately 95%
test accuracy was used to compute FID values.

In Fig. 4, we report the box-plots of 15 independent evaluations of FID on 10000 images for the best
model obtained with each method across 3 independent runs. Results once more indicate that HV out-
performs other methods in terms of quality of the generated samples. Moreover, performance clearly
improves as the number of discriminators grows. Furthermore, we repeat the experiments in [18]
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Figure 4: Box-plots of 15 independent FID com-
putations with 10000 images. Dashed lines are
real data (blue) and random generator (red) FIDs.

aiming to analyze how the number of discrimi-
nators impacts the sample diversity of the corre-
sponding generator when trained using hypervol-
ume maximization. The stacked MNIST dataset
is employed and results are reported in Table 1.

Modes (Max 1000) KL
DCGAN [15] 99.0 3.400

ALI [19] 16.0 5.400
Unrolled GAN [20] 48.7 4.320

VEEGAN [18] 150.0 2.950
PacDCGAN2 [21] 1000.0± 0.0 0.060± 0.003

HV - 8 disc. 776.8± 6.4 1.115± 0.007
HV - 16 disc. 1000.0± 0.0 0.088± 0.002
HV - 24 disc. 1000.0± 0.0 0.084± 0.002

Table 1: Number of covered modes and reverse
KL divergence for stacked MNIST.

All evaluated models using HV outperformed DCGAN, ALI, Unrolled GAN and VEEGAN. Moreover,
HV with 16 and 24 discriminators achieved state-of-the-art coverage values. The increase in “capacity”
via using more discriminators directly resulted in an improvement in generator’s coverage.

6 Conclusion

We introduced a multi-objective optimization framework for studying multiple discriminator GANs.
The proposed approach was observed to consistently yield higher quality samples in terms of FID as
compared to baseline methods. Furthermore, increasing the number of discriminators was shown to
increase sample diversity. Such approach can be easily combined with other GAN training schemes.
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