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Abstract

Games with continuous strategy sets arise in several machine learning problems
(e.g. adversarial learning). For such games, simple no-regret learning algorithms
exist in several cases and ensure convergence to coarse correlated equilibria (CCE).
The efficiency of such equilibria with respect to a social function, however, is
not well understood. In this paper, we define the class of valid utility games with
continuous strategies and provide efficiency bounds for their CCEs. Our bounds
rely on the social function satisfying recently introduced notions of submodularity
over continuous domains. We further refine our bounds based on the curvature
of the social function. Furthermore, we extend our efficiency bounds to a class
of non-submodular functions that satisfy approximate submodularity properties.
Finally, we show that valid utility games with continuous strategies can be designed
to maximize monotone DR-submodular functions subject to disjoint constraints
with approximation guarantees. The approximation guarantees we derive are based
on the efficiency of the equilibria of such games and can improve the existing ones
in the literature. We illustrate and validate our results on a budget allocation game
and a sensor coverage problem.

1 Introduction and problem formulation
Game theory is a powerful tool for modelling many real-world multi-agent decision making problems
[6]. In machine learning, game theory has received substantial interest in the area of adversarial
learning (e.g. generative adversarial networks [11]) where models are trained via games played by
competing modules [2]. Apart from modelling interactions among agents, game theory is also used
in the context of distributed optimization. In fact, games can be designed so that multiple entities can
contribute to optimizing a common objective function [18, 16]. When the strategies for each player
are uncountably infinite, the game is said to be continuous. Continuous games describe a broad range
of problems where integer or binary strategies may have limited expressiveness (e.g. market sharing
[10], or budget allocations [4]). In machine learning, many games are naturally continuous [15].

In this work we consider continuous N -players games, where each player i chooses a vector si in its
feasible strategy set Si ⊆ Rd+. We let s = (s1, . . . , sN ) be the vector of all the strategy profiles and
S =

∏N
i=1 Si ⊆ RNd+ be the joint strategy space. Each player aims to maximize her payoff function

πi : S → R, and we let the social function be γ : RNd+ → R+ with γ(0) = 0, where 0 is the null
vector. We denote such games with the tuple G = (N, {Si}Ni=1, {πi}Ni=1, γ). Given an outcome s we
use the standard notation (si, s−i) to denote the outcome where player i chooses strategy si and the
other players select strategies s−i = (s1, . . . , si−1, si+1, . . . sN ).

Although continuous games are finding increasing applicability, from a theoretical viewpoint they are
less understood than games with finitely many strategies. Recently, no-regret learning algorithms
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[6] have been proposed for continuous games under different set-ups [23, 21, 19]. Similarly to finite
games [6], these no-regret dynamics converge to coarse correlated equilibria, the weakest class of
equilibria [21, 2]. A coarse correlated equilibrium (CCE) is a probability distribution σ over the
outcomes S that satisfies

Es∼σ[πi(s)] ≥ Es∼σ[πi(s
′
i, s−i)] ∀i ∈ {1, . . . , N},∀s′i ∈ Si .

However, CCEs may be highly suboptimal for the social function. A central open question is to
understand the (in)efficiency of such equilibria.

To measure the inefficiency of CCEs arising from no-regret dynamics, [5] introduces the price of
total anarchy. Recently, [20] generalizes this notion defining the robust price of anarchy (robust PoA)
which measures the inefficiency of any CCE (including the ones arising from regret minimization).
Given G, we let ∆ be the set of all CCEs of G and define the robust PoA:

PoACCE :=
maxs∈S γ(s)

minσ∈∆ Es∼σ[γ(s)]
≥ 1 .

A bound on PoACCE hence, has two important implications. First, in multi-agent systems, PoACCE
bounds the efficiency of no-regret learning dynamics followed by the selfish agents. Second, in the
context of distributed optimization, no-regret learning algorithms can be implemented distributively
to optimize a given function and PoACCE certifies the overall approximation guarantee.

Bounds on the robust PoA provided by [20] mostly concern games with finitely many actions. A
class of such games are the valid utility games introduced by [22]. Strategies consist of selecting
subsets of a ground set, and can be equivalently represented as binary decisions. Recently, authors in
[17] extend the notion of valid utility games to integer domains. The PoA bounds obtained in [22]
and [17] rely on the social function being a submodular set function and a submodular function over
integer lattices, respectively. Recently, the notion of submodularity has been extended to continuous
domains [1, 4, 12]. However, to the best of author’s knowledge, it has not been utilized for analyzing
efficiency of equilibria of games with continuous strategies.

2 Main results
We bound the robust price of anarchy for a subclass of continuous games, which we denote as valid
utility games with continuous strategies. They are the continuous counterpart of the valid utility
games introduced by [22] and [17] for binary and integer strategies, respectively. Our bounds rely on
a particular game structure and on the social function being a monotone DR-submodular function
[4, Definition 1]. Moreover, as in [22] our bound can be refined depending on the curvature of γ.
While DR properties have been recently studied also in continuous domains, notions of curvature of a
submodular function were only explored for set functions [7, 13]. Hence, in Definition 2 we define
the curvature of a monotone DR-submodular function on continuous domains. We also show that
our bounds can be extended to non-submodular functions which have ‘approximate’ submodularity
properties. This is in contrast to [22, 20, 17] where only submodular social functions were considered.
Finally, motivated by the machinery of [18] in finite actions games, we show that valid utility games
with continuous strategies can be designed to maximize non convex/non concave functions in a
distributed fashion with approximation guarantees. Depending on the curvature of the function, the
obtained guarantees can improve the ones available in the literature.

Notation. We denote by ei the ith unit vector of appropriate dimension. Given n ∈ N, with n ≥ 1,
we define [n] := {1, . . . , n}. Given vectors x,y, we use [x]i and xi interchangeably to indicate the
ith coordinate of x. Moreover, for vectors of equal dimension, x ≤ y means xi ≤ yi for all i. A
function f : X ⊆ Rn → R is monotone if, for all x ≤ y ∈ X , f(x) ≤ f(y).

2.1 Robust PoA bounds
Before defining the class of valid utility games with continuous strategies, we define DR-submodular
functions and their curvature on continuous domains.
Definition 1 (DR property). A function f : X ⊆ Rn → R is DR-submodular if, for all x ≤ y ∈ X ,
∀i ∈ [n],∀k ∈ R+ such that (x + kei) and (y + kei) are still in X ,

f(x + kei)− f(x) ≥ f(y + kei)− f(y) .

Definition 2 (curvature). Given a monotone DR-submodular function f : X ⊆ Rn+ → R+, and a set
Z ⊆ X with 0 ∈ Z , we define the curvature of f with respect to Z by

α(Z) = 1− inf
x∈Z
i∈[n]

lim
k→0+

f(x + kei)− f(x)

f(kei)− f(0)
.
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Remark 1. For any monotone function f : Rn → R and ∀Z ⊆ Rn with 0 ∈ Z , α(Z) ∈ [0, 1].
When restricted to binary sets Z = {0, 1}n, Definition 2 coincides with the total curvature defined
in [7]. Moreover, if f is montone DR-submodular and differentiable, its curvature with respect to a
set Z can be computed as α(Z) = 1− infx∈Z

i∈[n]

[∇f(x)]i
[∇f(0)]i

.

Based on the previous definitions, we define the class of valid utility games with continuous strategies.
Definition 3. A game G = (N, {Si}Ni=1, {πi}Ni=1, γ) is a valid utility game with continuous strategies
if: i) The function γ is monotone DR-submodular.

ii) For each player i and for every outcome s, πi(s) ≥ γ(s)− γ(0, s−i).

iii) For every outcome s, γ(s) ≥
∑N
i=1 πi(s).

Intuitively, the conditions above ensure that the payoff for each player is at least her contribution
to the social function and that optimizing γ is somehow bind to the goals of the players. Defining
S̃ := {x ∈ RNd+ | 0 ≤ x ≤ smax} such that ∀s, s′ ∈ S, s+ s′ ≤ smax, we can establish Theorem 1.

Theorem 1. Let G = (N, {Si}Ni=1, {πi}Ni=1, γ) be a valid utility game with continuous strategies
with social function γ : RNd+ → R+ having curvature α(S̃) ≤ α. Then, PoACCE ≤ (1 + α).
Remark 2. If G is a valid utility game with continuous strategies, then PoACCE ≤ 2.
The notion of valid utility games above is an exact generalization of the one by [17] for integer
strategy sets. However, the curvature of γ was not used to refine the bound from PoACCE ≤ 2.
Moreover, leveraging recent advances in ‘approximate’ submodular functions, in the next section we
relax condition i) and derive PoACCE bounds for a strictly larger class of games.

2.2 Extension to the non-submodular case
In many applications [3], functions are close to being submodular, where this closedness has been
measured in term of submodularity ratio [8] (for set functions) and weak-submodularity [12] (on
continuous domains). Motivated by this, we relax the DR property required in condition i) with the
following two definitions.
Definition 4. Given a game G = (N, {Si}Ni=1, {πi}Ni=1, γ) with γ monotone, we define generalized
submodularity ratio of γ as the largest scalar η such that for any pair of outcomes s, s′ ∈ S,∑N

i=1
γ(si + s′i, s−i)− γ(s) ≥ η

[
γ(s + s′)− γ(s)

]
.

Clearly, η ∈ [0, 1]. Moreover, it is not hard to show that if γ is DR-submodular then γ has generalized
submodularity ratio η = 1 2.
Definition 5. Given a game G = (N, {Si}Ni=1, {πi}Ni=1, γ), we say that γ is playerwise DR-
submodular if for every player i and vector of strategies s−i, γ(·, s−i) is DR-submodular.
While Definition 4 concerns the interactions among different players, Definition 5 requires γ DR-
submodular with respect to each individual player. When the social function γ is DR-submodular,
then it is also playerwise DR-submodular and has generalized submodularity ratio η = 1. If γ is not
DR-submodular, the notions of Definition 4 and Definition 5 are two independent properties of γ and
none implies the other. We can affirm the following theorem.
Theorem 2. Let G = (N, {Si}Ni=1, {πi}Ni=1, γ) be a game where γ is monotone, playerwise DR-
submodular and has generalized submodularity ratio η > 0. Then, if conditions ii) and iii) of
Definition 3 are satisfied, PoACCE ≤ (1 + η)/η.
In light of the previous comments, when G is a valid utility game Theorem 2 yields a bound of 2, which
is always higher than (1 +α) from Theorem 1. This is because the notion of curvature in Definition 2
cannot be used in the more general setting of Theorem 2 since γ may not be DR-submodular.

2.3 Game-based monotone DR-submodular maximization
Consider the general problem of maximizing a monotone DR-submodular function γ : Rn → R+

subject to decoupled constraints X =
∏N
i=1 Xi ⊆ Rn. We can assume Xi ⊆ Rn+ and γ(0) = 0

without loss of generality [4]. Note that the class of monotone DR-submodular functions includes
non concave functions. To find approximate solutions, we set up a game

Ĝ := (N, {Ŝi}Ni=1, {π̂i}Ni=1, γ) ,

2In the full version, we show that when d = 1 Definition 4 generalizes the submodularity ratio by [8] to
continuous domains. Moreover, it is sufficient that γ has the weak DR property [4, Definition 2] to have η = 1.
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Figure 1: a) Bounds for PoACCE , as a function of pmax and the number of edges connected to
each customer. The bounds strictly improve the bound of 2 provided by [17] which does not depend
on any of such parameters. b) Performance of FRANK-WOLFE variant and D-NOREGRET for K
iterations. Left: γ(xK) as function of K. Right: γ(xK) as function of the budgets b, with K = 3000.
D-NOREGRET shows faster convergence, but for K = 3000 the two algorithms perform equally.

where for each player i, Ŝi := Xi and π̂i(s) := γ(s)− γ(0, s−i) for every outcome s ∈ S = X . By
using DR-submodularity of γ, we can affirm the following.
Fact 1. Ĝ is a valid utility game with continuous strategies.
Assume there exist xmax ∈ Rn+ such that ∀x,x′ ∈ X , x + x′ ≤ xmax. Then, we denote with α(X̃ )

the curvature of γ with respect to X̃ := {x ∈ Rn+ | 0 ≤ x ≤ xmax} and let α ∈ [0, 1] be an upper
bound for α(X̃ ). If such xmax does not exists, we let α = 1. Moreover, assume that for each player
i ∈ [N ] there exists a no-regret algorithm to play Ĝ. For instance, if X is convex and γ is concave in
each Xi, then π̂i’s are concave in each xi and the online gradient ascent algorithm by [23] ensures
no-regret for each player [9]. We let D-NOREGRET be the distributed algorithm where such no-regret
algorithms are simultaneously implemented for each player. We can establish the following corollary
of Theorem 1 3.

Corollary 1. Let x? = arg maxx∈X γ(x). Then, D-NOREGRET converges to a distribution σ over
X such that Ex∼σ[γ(x)] ≥ 1/(1 + α)γ(x?).

Note that the FRANK-WOLFE variant by [4] can also be used to maximize γ with (1 − e−1)
approximations, under the additional assumption that X is down-closed. For small α’s, however, our
guarantee strictly improves the one by [4].

Note: To prove our main results, in the full version of the paper we prove two DR properties equivalent
to the ones from the literature and a fundamental property of the introduced notion of curvature.

We remark that our definitions of curvature, submodularity ratio, and Theorems 1-2 can also be
applied to games and optimizations over integer domains, i.e., when Si ⊆ Zd+ and γ is defined on
integer lattices.

3 Examples and experiments
Continuous budget allocation game. We show that the continuous version of the integer budget
allocation game defined by [17] (see [17] for details) is a valid utility game with continuous strategies.
As visible in Figure 1a, our PoACCE bound depends on the maximum activation probability pmax
and the number of edges connected to each customer and strictly improves the bound of 2 by [17].

Sensor coverage with continuous assignments. We generalize the sensor coverage problem by [18]
(see [18] for details) assigning for each sensor a continuous amount of energy to each location. The
problem of maximizing the probability of detecting an event falls into the set-up of Section 2.3, where
online gradient ascent is a no-regret algorithm for each player. As visible in Figure 1b, D-NOREGRET
converges faster than FRANK-WOLFE variant. However, for K = 3000 iterations the two algorithms
perform equally. Finally, we show that a more general non-submodular version of such problem falls
under the hypothesis of Theorem 2 and provide approximation guarantees.

3A similar version of the corollary can be obtained when no-ε-regret [14] algorithms exist for each player.
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