Bounding Inefficiency of Equilibria in Continuous Actions Games using Submodularity and Curvature

Pier Giuseppe Sessa
ETH Zürich
dessap@control.ee.ethz.ch

Maryam Kamgarpour
ETH Zürich
maryamk@ethz.ch

Andreas Krause
ETH Zürich
krausea@ethz.ch

Abstract

Games with continuous strategy sets arise in several machine learning problems (e.g. adversarial learning). For such games, simple no-regret learning algorithms exist in several cases and ensure convergence to coarse correlated equilibria (CCE). The efficiency of such equilibria with respect to a social function, however, is not well understood. In this paper, we define the class of valid utility games with continuous strategies and provide efficiency bounds for their CCEs. Our bounds rely on the social function satisfying recently introduced notions of submodularity over continuous domains. We further refine our bounds based on the curvature of the social function. Furthermore, we extend our efficiency bounds to a class of non-submodular functions that satisfy approximate submodularity properties. Finally, we show that valid utility games with continuous strategies can be designed to maximize monotone DR-submodular functions subject to disjoint constraints with approximation guarantees. The approximation guarantees we derive are based on the efficiency of the equilibria of such games and can improve the existing ones in the literature. We illustrate and validate our results on a budget allocation game and a sensor coverage problem.

1 Introduction and problem formulation

Game theory is a powerful tool for modelling many real-world multi-agent decision making problems [6]. In machine learning, game theory has received substantial interest in the area of adversarial learning (e.g. generative adversarial networks [11]) where models are trained via games played by competing modules [2]. Apart from modelling interactions among agents, game theory is also used in the context of distributed optimization. In fact, games can be designed so that multiple entities can contribute to optimizing a common objective function [18] [16]. When the strategies for each player are uncountably infinite, the game is said to be continuous. Continuous games describe a broad range of problems where integer or binary strategies may have limited expressiveness (e.g. market sharing [10], or budget allocations [4]). In machine learning, many games are naturally continuous [15].

In this work we consider continuous N-players games, where each player i chooses a vector s_i in its feasible strategy set $S_i \subseteq \mathbb{R}^d_i$. We let $s = (s_1, \ldots, s_N)$ be the vector of all the strategy profiles and $S = \prod_{i=1}^{N} S_i \subseteq \mathbb{R}_+^d$ be the joint strategy space. Each player aims to maximize her payoff function $\pi_i : S \to \mathbb{R}$, and we let the social function be $\gamma : \mathbb{R}_+^N \to \mathbb{R}_+$ with $\gamma(0) = 0$, where 0 is the null vector. We denote such games with the tuple $\mathcal{G} = (N, \{S_i\}_{i=1}^{N}, \{\pi_i\}_{i=1}^{N}, \gamma)$. Given an outcome s we use the standard notation (s_i, s_{-i}) to denote the outcome where player i chooses strategy s_i and the other players select strategies $s_{-i} = (s_1, \ldots, s_{i-1}, s_{i+1}, \ldots, s_N)$.

Although continuous games are finding increasing applicability, from a theoretical viewpoint they are less understood than games with finitely many strategies. Recently, no-regret learning algorithms...
have been proposed for continuous games under different set-ups [23, 21, 19]. Similarly to finite games [6], these no-regret dynamics converge to coarse correlated equilibria, the weakest class of equilibria [21, 2]. A coarse correlated equilibrium (CCE) is a probability distribution \(\sigma \) over the outcomes \(S \) that satisfies
\[
E_{s \sim \sigma}[\pi_i(s)] \geq E_{s \sim \sigma}[\pi_i(s', s_{-i})] \quad \forall i \in \{1, \ldots, N\}, \forall s'_i \in S_i.
\]
However, CCEs may be highly suboptimal for the social function. A central open question is to understand the (in)efficiency of such equilibria.

To measure the inefficiency of CCEs arising from no-regret dynamics, [5] introduces the price of total anarchy. Recently, [20] generalizes this notion defining the robust price of anarchy (robust PoA) which measures the inefficiency of any CCE (including the ones arising from regret minimization). Given \(G \), we let \(\Delta \) be the set of all CCEs of \(G \) and define the robust PoA:
\[
PoA_{CCE} := \frac{\max_{\sigma \in \Delta} \gamma(\sigma)}{\min_{\sigma \in \Delta} \EE_{s \sim \sigma}[\gamma(\sigma)]} \geq 1.
\]
A bound on \(PoA_{CCE} \) hence, has two important implications. First, in multi-agent systems, \(PoA_{CCE} \) bounds the efficiency of no-regret learning dynamics followed by the selfish agents. Second, in the context of distributed optimization, no-regret learning algorithms can be implemented distributively to optimize a given function and \(PoA_{CCE} \) certifies the overall approximation guarantee.

Bounds on the robust PoA provided by [20] mostly concern games with finitely many actions. A class of such games are the valid utility games introduced by [22]. Strategies consist of selecting subsets of a ground set, and can be equivalently represented as binary decisions. Recently, authors in [17] extend the notion of valid utility games to integer domains. The PoA bounds obtained in [22] and [17] rely on the social function being a submodular set function and a submodular function over integer lattices, respectively. Recently, the notion of submodularity has been extended to continuous domains [1, 4, 12]. However, to the best of author’s knowledge, it has not been utilized for analyzing efficiency of equilibria of games with continuous strategies.

2 Main results

We bound the robust price of anarchy for a subclass of continuous games, which we denote as valid utility games with continuous strategies. They are the continuous counterpart of the valid utility games introduced by [22] and [17] for binary and integer strategies, respectively. Our bounds rely on a particular game structure and on the social function being a monotone DR-submodular function [4, Definition 1]. Moreover, as in [22] our bound can be refined depending on the curvature of \(\gamma \).

While DR properties have been recently studied also in continuous domains, notions of curvature of a submodular function were only explored for set functions [7, 13]. Hence, in Definition 2 we define the curvature of a monotone DR-submodular function on continuous domains. We also show that our bounds can be extended to non-submodular functions which have ‘approximate’ submodularity properties. This is in contrast to [22, 20, 17] where only submodular social functions were considered.

Finally, motivated by the machinery of [18] in finite actions games, we show that valid utility games with continuous strategies can be designed to maximize non convex/non concave functions in a distributed fashion with approximation guarantees. Depending on the curvature of the function, the obtained guarantees can improve the ones available in the literature.

Notation. We denote by \(e_i \) the \(i \)th unit vector of appropriate dimension. Given \(n \in \mathbb{N} \), with \(n \geq 1 \), we define \([n] := \{1, \ldots, n\} \). Given vectors \(x, y \), we use \([x]_i \) and \(x_i \) interchangeably to indicate the \(i \)th coordinate of \(x \). Moreover, for vectors of equal dimension, \(x \leq y \) means \(x_i \leq y_i \) for all \(i \). A function \(f : \mathcal{X} \subseteq \mathbb{R}^n \to \mathbb{R} \) is monotone if, for all \(x \leq y \in \mathcal{X} \), \(f(x) \leq f(y) \).

2.1 Robust PoA bounds

Before defining the class of valid utility games with continuous strategies, we define DR-submodular functions and their curvature on continuous domains.

Definition 1 (DR property). A function \(f : \mathcal{X} \subseteq \mathbb{R}^n \to \mathbb{R} \) is DR-submodular if, for all \(x \leq y \in \mathcal{X} \), \(\forall i \in [n], \forall k \in \mathbb{R}^+ \) such that \((x + ke_i) \) and \((y + ke_i) \) are still in \(\mathcal{X} \),
\[
f(x + ke_i) - f(x) \geq f(y + ke_i) - f(y).
\]

Definition 2 (curvature). Given a monotone DR-submodular function \(f : \mathcal{X} \subseteq \mathbb{R}^n_+ \to \mathbb{R}_+ \), and a set \(\mathcal{Z} \subseteq \mathcal{X} \) with \(0 \in \mathcal{Z} \), we define the curvature of \(f \) with respect to \(\mathcal{Z} \) by
\[
\alpha(\mathcal{Z}) = 1 - \inf_{x \in \mathcal{Z}} \lim_{k \to 0^+} \frac{f(x + ke_i) - f(x)}{f(ke_i) - f(0)}.
\]
Remark 1. For any monotone function $f : \mathbb{R}^n \to \mathbb{R}$ and $\forall \mathbf{Z} \subseteq \mathbb{R}^n$ with $0 \in \mathbf{Z}$, $\alpha(\mathbf{Z}) \in [0, 1]$.
When restricted to binary sets $\mathbf{Z} = \{0, 1\}^n$, Definition 4 [2] coincides with the total curvature defined in [7]. Moreover, if f is monotone DR-submodular and differentiable, its curvature with respect to a set \mathbf{Z} can be computed as $\alpha(\mathbf{Z}) = 1 - \inf_{x \in \mathbf{Z}} \frac{\nabla^2 f(x)}{\nabla f(0)}$.

Based on the previous definitions, we define the class of valid utility games with continuous strategies.

Definition 3. A game $G = (N, \{S_i\}_{i=1}^N, \{\pi_i\}_{i=1}^N, \gamma)$ is a valid utility game with continuous strategies if:

i) The function γ is monotone DR-submodular.

ii) For each player i and for every outcome s, $\pi_i(s) \geq \gamma(s) - \gamma(0, s_{-i})$.

iii) For every outcome s, $\gamma(s) \geq \sum_{i=1}^N \pi_i(s)$.

Intuitively, the conditions above ensure that the payoff for each player is at least her contribution to the social function and that optimizing γ is somehow bound to the goals of the players. Defining $S := \{x \in \mathbb{R}_{+}^N \mid 0 \leq x \leq s_{\text{max}}\}$ such that $\forall s, s' \in S$, $s + s' \leq s_{\text{max}}$, we can establish Theorem 1.

Theorem 1. Let $G = (N, \{S_i\}_{i=1}^N, \{\pi_i\}_{i=1}^N, \gamma)$ be a valid utility game with continuous strategies with social function $\gamma : \mathbb{R}_{+}^N \to \mathbb{R}_+$ having curvature $\alpha(S) \leq \alpha$. Then, $\text{PoA}_{\text{CCE}} \leq (1 + \alpha)$.

Remark 2. If γ is a valid utility game with continuous strategies, then $\text{PoA}_{\text{CCE}} \leq 2$.

The notion of valid utility games above is an exact generalization of the one by [17] for integer strategy sets. However, the curvature of γ was not used to refine the bound from $\text{PoA}_{\text{CCE}} \leq 2$. Moreover, leveraging recent advances in ‘approximate’ submodular functions, in the next section we relax condition i) and derive PoA_{CCE} bounds for a strictly larger class of games.

2.2 Extension to the non-submodular case

In many applications [3], functions are close to being submodular, where this closedness has been measured in term of submodularity ratio [3] (for set functions) and weak-submodularity [12] (on continuous domains). Motivated by this, we relax the DR property required in condition i) with the following two definitions.

Definition 4. Given a game $G = (N, \{S_i\}_{i=1}^N, \{\pi_i\}_{i=1}^N, \gamma)$ with γ monotone, we define generalized submodularity ratio of γ as the largest scalar η such that for any pair of outcomes $s, s' \in S$, $s + s' \leq s_{\text{max}}$,

$$\sum_{i=1}^N \gamma(s_i + s'_i, s_{-i}) - \gamma(s) \geq \eta \left[\gamma(s + s') - \gamma(s)\right].$$

Clearly, $\eta \in [0, 1]$. Moreover, it is not hard to show that if γ is DR-submodular then η has generalized submodularity ratio $\eta = 1$.

Definition 5. Given a game $G = (N, \{S_i\}_{i=1}^N, \{\pi_i\}_{i=1}^N, \gamma)$, we say that γ is playerwise DR-submodular if for every player i and vector of strategies $s_{-i}, \gamma(\cdot, s_{-i})$ is DR-submodular.

While Definition 4 concerns the interactions among different players, Definition 5 requires γ DR-submodular with respect to each individual player. When the social function γ is DR-submodular, then it is also playerwise DR-individual and has generalized submodularity ratio $\eta = 1$. If γ is not DR-submodular, the notions of Definition 4 and Definition 5 are two independent properties of γ and one implies the other. We can affirm the following theorem.

Theorem 2. Let $G = (N, \{S_i\}_{i=1}^N, \{\pi_i\}_{i=1}^N, \gamma)$ be a game where γ is monotone, playerwise DR-submodular and has generalized submodularity ratio $\eta > 0$. Then, if conditions ii) and iii) of Definition 4 are satisfied, $\text{PoA}_{\text{CCE}} \leq (1 + \eta) / \eta$.

In light of the previous comments, when G is a valid utility game Theorem 2 yields a bound of 2, which is always higher than $(1 + \alpha)$ from Theorem 1. This is because the notion of curvature in Definition 2 cannot be used in the more general setting of Theorem 2, since γ may not be DR-submodular.

2.3 Game-based monotone DR-submodular maximization

Consider the general problem of maximizing a monotone DR-submodular function $\gamma : \mathbb{R}^n \to \mathbb{R}_+$ subject to decoupled constraints $\mathbf{X} = \prod_{i=1}^N \mathbf{X}_i \subseteq \mathbb{R}^n$. We can assume $\mathbf{X}_i \subseteq \mathbb{R}_+^n$ and $\gamma(0) = 0$ without loss of generality [4]. Note that the class of monotone DR-submodular functions includes non concave functions. To find approximate solutions, we set up a game $\tilde{G} := (N, \{\tilde{S}_i\}_{i=1}^N, \{\tilde{\pi}_i\}_{i=1}^N, \gamma)$.

In the full version, we show that when $d = 1$ Definition 4 generalizes the submodularity ratio by [8] to continuous domains. Moreover, it is sufficient that γ has the weak DR property [4, Definition 2] to have $\eta = 1$.

3
where for each player i, $S_i := X_i$ and $\hat{\pi}_i(s) := \gamma(s) - \gamma(0, s_{-i})$ for every outcome $s \in S = X$. By using DR-submodularity of γ, we can affirm the following.

Fact 1. \tilde{G} is a valid utility game with continuous strategies. Assume there exist $x_{\text{max}} \in \mathbb{R}^n_+$ such that $\forall x, x' \in X$, $x + x' \leq x_{\text{max}}$. Then, we denote with $\alpha(X)$ the curvature of γ with respect to $X := \{x \in \mathbb{R}^n_+ \mid 0 \leq x \leq x_{\text{max}}\}$ and let $\alpha \in [0, 1]$ be an upper bound for $\alpha(X)$. If such x_{max} does not exists, we let $\alpha = 1$. Moreover, assume that for each player $i \in [N]$ there exists a no-regret algorithm to play \tilde{G}. For instance, if X is convex and γ is concave in each X_i, then $\hat{\pi}_i$’s are concave in each x_i and the online gradient ascent algorithm by [23] ensures no-regret for each player [9]. We let D-NOREGRET be the distributed algorithm where such no-regret algorithms are simultaneously implemented for each player. We can establish the following corollary of Theorem 1.

Corollary 1. Let $x^* = \arg\max_{x \in X} \gamma(x)$. Then, D-NOREGRET converges to a distribution σ over X such that $\mathbb{E}_{x \sim \sigma}[\gamma(x)] \geq 1/(1 + \alpha)\gamma(x^*)$.

Note that the FRANK-WOLFE variant by [4] can also be used to maximize γ with $(1 - \epsilon^{-1})$ approximations, under the additional assumption that X is down-closed. For small α’s, however, our guarantee strictly improves the one by [4].

Note: To prove our main results, in the full version of the paper we prove two DR properties equivalent to the ones from the literature and a fundamental property of the introduced notion of curvature.

We remark that our definitions of curvature, submodularity ratio, and Theorems 1-2 can also be applied to games and optimizations over integer domains, i.e., when $S_i \subseteq \mathbb{Z}^d_+$ and γ is defined on integer lattices.

3 Examples and experiments

Continuous budget allocation game. We show that the continuous version of the integer budget allocation game defined by [17] (see [17] for details) is a valid utility game with continuous strategies. As visible in Figure 1a, our PoA_{CCE} bound depends on the maximum activation probability p_{max} and the number of edges connected to each customer and strictly improves the bound of 2 by [17].

Sensor coverage with continuous assignments. We generalize the sensor coverage problem by [18] (see [18] for details) assigning for each sensor a continuous amount of energy to each location. The problem of maximizing the probability of detecting an event falls into the set-up of Section 2.3, where online gradient ascent is a no-regret algorithm for each player. As visible in Figure 1b, D-NOREGRET converges faster than FRANK-WOLFE variant. However, for $K = 3000$ iterations the two algorithms perform equally. Finally, we show that a more general non-submodular version of such problem falls under the hypothesis of Theorem 2 and provide approximation guarantees.

3 A similar version of the corollary can be obtained when no-ϵ-regret [14] algorithms exist for each player.
References

