Generalized Mirror Prox Algorithm for Variational Inequalities

Pavel Dvurechensky
Weierstrass Institute for Applied Analysis and Stochastics
pavel.dvurechensky@wias-berlin.de

Alexander Gasnikov
Moscow Institute of Physics and Technology, Institute for Information Transmission Problems RAS
gasnikov@yandex.ru

Fedor Stonyakin
V.I. Vernadsky Crimean Federal University
fedyor@mail.ru

Alexander Titov
Moscow Institute of Physics and Technology
a.a.titov@phystech.edu

Abstract

Recently saddle-point problems and variational inequalities (VI’s) gained a new interest in the deep learning community, e.g. in application to Generative Adversary Networks. We consider VI’s with Hölder continuous monotone operator and propose a new algorithm which is universal for VI’s with smooth, non-smooth and intermediate operator. This means that without knowing the Hölder parameter \(\nu \) and Hölder constant \(L_\nu \) our method has the best possible complexity for this class of VI’s, namely our algorithm has complexity \(O \left(\inf_{\nu \in [0,1]} \left(\frac{L_\nu}{\nu} \right)^{\frac{1}{1+\nu}} R^2 \right) \), where \(R \) is the size of the feasible set and \(\varepsilon \) is the desired accuracy of the solution. We also consider the case of VI’s with strongly monotone operator and generalize our method for such VI’s.\(^1\)

1 Introduction

The main problem, we consider, is the following weak variational inequality (VI)

\[
\text{Find } x_\ast \in Q : \quad \langle g(x), x_\ast - x \rangle \leq 0, \quad \forall x \in Q
\]

where \(Q \subseteq E \) is a closed convex set and continuous operator \(g(x) : Q \to E^* \) is monotone

\[
\langle g(x) - g(y), x - y \rangle \geq 0, \quad x, y \in Q.
\]

Under the assumption of continuity and monotonicity of the operator, this problem is equivalent to strong variational inequality, in which the goal is to find \(x_\ast \in Q \) s.t. \(\langle g(x_\ast), x_\ast - x \rangle \leq 0, \quad \forall x \in Q. \) Variational inequalities with monotone operators are strongly connected with convex optimization problems and convex-concave saddle-point problems. In the former case, operator \(g \) is the subgradient of the objective, and in the latter case operator \(g \) is composed from partial subgradients of the objective in the saddle-point problem. Studying VI’s is also important for equilibrium and complementarity

\(^1\)The full text of the paper, including the case of VI’s with inexactly given operator and application to saddle point problems, can be found as [7] at \url{https://arxiv.org/abs/1806.05140}

Abstract for: Smooth Games Optimization and Machine Learning Workshop (NIPS 2018), Montréal, Canada.
Our focus here is on numerical methods for VI problems, their convergence rate and complexity estimates. Numerical methods for VI’s are known since 1970’s when the extragradient method was proposed in [13]. More recently, [16] proposed a non-Euclidean variant of this method, called Mirror Prox algorithm. Under the assumption of \(L_1 \)-Lipschitz continuity of the operator \(g \), i.e. \(g \) satisfies \(\|g(x) - g(y)\| \leq L_0 \|x - y\|, x, y \in Q \), this method has complexity \(O \left(\frac{L_0^2 R^2}{\epsilon^2} \right) \), where \(R \) characterizes the diameter of the set \(Q \). \(\epsilon \) is the desired accuracy. By complexity we mean the number of iterations of an algorithm to find a point \(\hat{x} \in Q \) s.t.
\[
\max_{u \in Q} \langle g(u), \hat{x} - u \rangle \leq \epsilon.
\]

Different methods with similar complexity were also proposed in [21] [18] [15]. In [18], the author proposed a method for VI’s with bounded variation of the operator \(g \), i.e. \(g \) satisfying \(\|g(x) - g(y)\| \leq L_0, x, y \in Q \), and complexity \(O \left(\frac{L_0 R^2}{\nu} \right) \). He also raised a question, whether it is possible to propose a method, which automatically "adjusts to the actual level of smoothness of the current problem instance". One of the goals of this work is to propose such an algorithm.

To do so, we consider a more general class of operators \(g \) being H"older continuous on \(Q \), i.e., for some \(\nu \in [0, 1] \) and \(\nu \geq 0, \)
\[
\|g(x) - g(y)\| \leq L_\nu \|x - y\|^\nu, \quad x, y \in Q. \tag{2}
\]
This class covers both the case of \(g \) with bounded variation \((\nu = 0) \) and Lipschitz continuous \(g \) \((\nu = 1) \). Variational inequalities with H"older continuous monotone operator were already considered in [16], where a special choice of the stepsize for the Mirror Prox algorithm leads to complexity
\[
O \left(\left(\frac{L_\nu}{\epsilon} \right)^{\frac{2}{1+\nu}} R^2 \right),
\]
which is optimal for this class of problems, see [17]. [4] consider VI’s with non-monotone H"older continuous operator. Unfortunately, both papers use \(\nu \) and \(L_\nu \) to define the stepsize of their methods. This is in sharp contrast to optimization, where so called universal algorithms were proposed, which do not use the information about the H"older class and H"older constant, see [19, 28, 23, 5, 20, 6, 11]. In this work, we close this gap and propose a universal method for VI’s with H"older continuous monotone operator.

To sum up, our contributions in this paper are as follows.

- We generalize Mirror Prox algorithm for VI’s with H"older continuous monotone operator and provide theoretical analysis of its convergence rate showing that it has complexity
\[
O \left(\inf_{\nu \in [0, 1]} \left(\frac{L_\nu}{\epsilon} \right)^{\frac{2}{1+\nu}} R^2 \right)
\]
and, unlike existing methods, does not require any knowledge about \(L_\nu \) or \(\nu \).

- We generalize our algorithm for the case of \(\mu \)-strongly monotone operator \(g \) and obtain complexity
\[
O \left(\inf_{\nu \in [0, 1]} \left(\frac{L_\nu}{\mu} \right)^{\frac{2}{1+\nu}} \frac{1}{\epsilon^{\frac{2}{1+\nu}}} \cdot \log_2 \left(\frac{R^2}{\epsilon} \right) \right)
\]
to find a point \(\hat{x} \in Q \) s.t. \(\|\hat{x} - x_*\| \leq \epsilon \).

2 Main results

2.1 Monotone operator

We start with the general notation and description of proximal setup. Let \(E \) be a finite-dimensional real vector space and \(E^* \) be its dual. We denote the value of a linear function \(g \in E^* \) at \(x \in E \) by \(\langle g, x \rangle \). Let \(\| \cdot \| \) be some norm on \(E \), \(\| \cdot \|_* \) be its dual, defined by \(\| g \|_* = \max_x \{ \langle g, x \rangle, \| x \| \leq 1 \} \).
We choose a prox-function $d(x)$, which is 1-strongly convex on Q with respect to $\| \cdot \|$, i.e., for any $x, y \in Q$, $d(y) - d(x) - \langle \nabla d(x), y - x \rangle \geq \frac{1}{2} \| y - x \|^2$. Without loss of generality, we assume that $\min_{x \in Q} d(x) = 0$. We define also the corresponding Bregman divergence $V(z)(x) = d(x) - d(z) - \langle \nabla d(z), x - z \rangle$, $x \in Q, z \in Q^\nu$. Standard proximal setups, i.e. Euclidean, entropy, ℓ_1/ℓ_2, simplex, nuclear norm, spectahedron can be found in [3].

Algorithm 1 Generalized Mirror Prox

Input: accuracy $\varepsilon > 0$, initial guess $M_{-1} > 0$, prox-setup: $d(x), V(z)(x)$.

1. Set $k = 0$, $z_0 = \arg \min_{u \in Q} d(u)$.
2. for $k = 0, 1, \ldots$ do
3. Set $i_k = 0$.
4. repeat
5. Set $M_k = 2^{i_k} M_{k-1}$.
6. Calculate $w_k = \arg \min_{z \in Q} \{ \langle g(z_k), x \rangle + M_k V[z_k](x) \}$. (3)
7. Calculate $z_{k+1} = \arg \min_{x \in Q} \{ \langle g(w_k), x \rangle + M_k V[z_k](x) \}$. (4)
8. $i_k = i_k + 1$.
9. until $\langle g(w_k) - g(z_k), w_k - z_{k+1} \rangle \leq \frac{M_k}{2} \left(\| w_k - z_k \|^2 + \| w_k - z_{k+1} \|^2 \right) + \frac{\varepsilon}{2}$. (5)
10. Set $k = k + 1$.
11. end for

Output: $\hat{w}_k = \frac{1}{\sum_{i=0}^{k-1} M_i} \sum_{i=0}^{k-1} M_{i}^{-1} w_i$.

Theorem 1 (Universal Method for VI). Assume that the operator g is Hölder continuous with constant L_{ν} for some $\nu \in [0, 1]$ and $M_{-1} \leq \left(\frac{1}{2} \right)^{1+\frac{\nu}{1-\nu}} L_{\nu}^{\frac{2}{1-\nu}}$. Also assume that the set Q is bounded. Then, for all $k \geq 0$, we have

$$\max_{u \in Q} \langle g(u), \hat{w}_k - u \rangle \leq \frac{(2L_{\nu})^{\frac{2}{1-\nu}}}{k^{1+\frac{\nu}{1-\nu}}} \max_{u \in Q} V[z_0](u) + \frac{\varepsilon}{2}. \quad (6)$$

Since the algorithm does not use the values of parameters ν and L_{ν}, we obtain the following iteration complexity bound to achieve $\max_{u \in Q} \langle g(u), \hat{w}_k - u \rangle \leq \varepsilon$

$$2 \inf_{\nu \in [0, 1]} \left(\frac{2L_{\nu}}{\varepsilon} \right)^{\frac{2}{1-\nu}} \max_{u \in Q} V[z_0](u).$$

Using the same reasoning as in [19], we estimate the number of oracle calls for Algorithm 1. The number of oracle calls on each iteration k is equal to $2i_k$. At the same time, $M_k = 2^{i_k-2} M_{k-1}$ and, hence, $i_k = 2 + \log_2 \frac{M_k}{M_{k-1}}$. Thus, the total number of oracle calls is

$$\sum_{j=0}^{k-1} i_j = 4k + 2 \sum_{i=0}^{k-1} \log_2 \frac{M_j}{M_{j-1}} < 4k + 2 \log_2 \left(2L_{\nu} \left(\frac{\varepsilon}{2} \right) \right) - 2 \log_2 (M_{-1}), \quad (7)$$

where we used that $M_k \leq 2L_{\nu}(\frac{\varepsilon}{2})$.

Thus, the number of oracle calls of Algorithm 1 does not exceed:

$$4 \inf_{\nu \in [0, 1]} \left(\frac{2L_{\nu}}{\varepsilon} \right)^{\frac{2}{1-\nu}} \max_{u \in Q} V[z_0](u) + 2 \inf_{\nu \in [0, 1]} \log_2 2 \left(\frac{2}{\varepsilon} \right)^{\frac{1-\nu}{1-\nu}} L_{\nu}^{\frac{2-\nu}{1-\nu}} - 2 \log_2 (M_{-1}).$$
2.2 Strongly monotone operator

Now we assume that \(g \) in (1) is a strongly monotone operator, which means that, for some \(\mu > 0 \),
\[
\langle g(x) - g(y), x - y \rangle \geq \mu \|x - y\|^2 \quad \forall x, y \in Q. \tag{8}
\]
We slightly modify the assumptions on prox-function \(d(x) \). Namely, we assume that \(0 = \arg\min_{x \in Q} d(x) \) and that \(d \) is bounded on the unit ball in the chosen norm \(\| \cdot \| \), that is
\[
d(x) \leq \frac{\Omega}{2}, \quad \forall x \in Q : \|x\| \leq 1, \tag{9}
\]
where \(\Omega \) is some known constant. Note that for standard proximal setups, \(\Omega = O(\ln \dim E) \). Finally, we assume that we are given a starting point \(x_0 \in Q \) and a number \(R_0 > 0 \) such that \(\|x_0 - x^*\|^2 \leq R_0^2 \), where \(x^* \) is the solution to (1).

Algorithm 2 Restarted Generalized Mirror Prox

Input: accuracy \(\varepsilon > 0 \), \(\mu > 0 \), \(\Omega \) s.t. \(d(x) \leq \frac{\Omega}{2} \) \(\forall x \in Q : \|x\| \leq 1 \); \(x_0 \), \(R_0 \) s.t. \(\|x_0 - x^*\|^2 \leq R_0^2 \).

1: Set \(p = 0 \), \(d_0(x) = d \left(\frac{x - x_0}{R_0} \right) \).
2: repeat
3: Set \(x_{p+1} \) as the output of Algorithm 1 for monotone case with accuracy \(\mu\varepsilon/2 \), prox-function \(d_p(\cdot) \) and stopping criterion \(\sum_{i=0}^{k-1} M_i^{-1} \geq \frac{\Omega}{\mu} \).
4: Set \(R_{p+1}^2 = R_0^2 \cdot 2^{-(p+1)} + (1 - 2^{-(p+1)}) \frac{\varepsilon}{2} \).
5: Set \(d_{p+1}(x) \leftarrow d \left(\frac{x - x_{p+1}}{R_{p+1}} \right) \).
6: Set \(p = p + 1 \).
7: until \(p > \log_2 \frac{2R_0^2}{\varepsilon} \)

Output: \(x_p \).

Theorem 2. Assume that \(g \) is strongly monotone with parameter \(\mu \). Also assume that the prox function \(d(x) \) satisfies (2) and the starting point \(x_0 \in Q \) and a number \(R_0 > 0 \) are such that \(\|x_0 - x^*\|^2 \leq R_0^2 \), where \(x^* \) is the solution to (1). Then, for \(p \geq 0 \)
\[
\|x_p - x^*\|^2 \leq R_0^2 \cdot 2^{-p} + \frac{\varepsilon}{2}
\]
and the point \(x_p \) returned by Algorithm 2 satisfies \(\|x_p - x^*\|^2 \leq \varepsilon \).

Theorem 3. Assume that the operator \(g \) is Hölder continuous with constant \(L_\nu \) for some \(\nu \in [0, 1] \) and strongly monotone with parameter \(\mu \). Then Algorithm 2 returns a point \(x_p \) s.t. \(\|x_p - x^*\|^2 \leq \varepsilon \) and the total number of iterations of the inner Algorithm 1 does not exceed
\[
\inf_{\nu \in [0, 1]} \left(\frac{L_\nu}{\mu} \right)^{\frac{2}{1+\nu}} \frac{2 \left(\frac{3+\nu}{\mu} \Omega \right)^{\frac{2}{1+\nu}}}{\varepsilon} \cdot \log_2 \left(\frac{2R_0^2}{\varepsilon} \right). \tag{10}
\]
References

